K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2023

B=3+3²+3³+..... +3¹00 

B=3²+3³+3⁴+... 3¹00+3

B=3²(1+3+3²) +... +3 98(1+3+3²) +3

B=3²•13+... +3 98•13+3

=) 3²•13+3 98•13 chia hết cho 13

=) Số dư là 3

 

7 tháng 12 2023

           B = 3 + 32 + 33 + 34 + ... + 3100

           B = 31 + 32 + 33 + 34+... + 3100

Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:

                     2   - 1  = 1

Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.

Vậy B có 100 hạng tử, vì 100 : 3  = 33 dư 1 

Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được 

B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3

B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3

B = 398. 13 + 395.13 + ... + 32.13 + 3

B = 13.(398 + 395 + ... + 32) + 3

Vì: 13. (398 + 395 + ... + 32) ⋮ 13 

⇒ B : 13 dư 3

 

            

              

 

 

 

 

5 tháng 11 2016

TÌM SỐ DƯ TRONG PHÉP TÍNH SAU

34:5 dư 4     23:3 dư 2       33:4 dư 1

21:2 dư 1     13:2 dư 1       17:2 dư 1

k nha 

๖ۣۜH๖ۣۜU๖ۣۜY  ๖ۣۜR๖ۣۜI๖ۣۜO

5 tháng 11 2016

34:5 dư 4        23:3 dư 2      33:4 dư 1

21:2 dư 1        13:2 dư 1      17:2 dư 1

30 tháng 10 2023

\(A=1+3+3^2+3^3+...+3^{2022}\)

\(=1+\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)

\(=1+3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2020}\left(1+3+3^2\right)\)

\(=1+13\left(3+3^4+...+3^{2020}\right)\)

=>A chia 13 dư 1

30 tháng 10 2023

Bạn ơi, bạn cũng xem lại giúp mình luôn nha

2020 đâu có chia hết cho 3

Với lại dãy này có 2023 số đó bạn, 2023 cũng đâu chia hết cho 3 đâu

9 tháng 6 2021

wow! mù mắt. Ido tính toán có khác!

9 tháng 6 2021

C2:(32+1)x32:2=528

bạn tính thử xem đúng đấy.

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

4 tháng 10 2019

ko co tg

4 tháng 10 2019

sorry