Hãy chứng minh: 1+4+4^2+4^3+ ... + 4^2018 chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
`#3107.101107`
\(B=4+4^2+4^3+...+4^{89}+4^{90}\)
\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)
\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)
\(=21\left(4+4^{88}\right)\)
Vì \(21\left(4+4^{88}\right)\) `\vdots 21`
`\Rightarrow B \vdots 21`
Vậy, `B \vdots 21.`
Đặt A=\(1+3+3^2+3^3+...+3^{2018}\)
A=\(\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2017}+3^{2018}\right)\)
A=\(4+3^2.\left(1+3\right)+...+3^{2017}.\left(1+3\right)\)
A=\(4+3^2.4+...+3^{2017}.4\)
A=\(4.\left(1+3^2+...+3^{2017}\right)\)
\(\Rightarrow\)A\(⋮\)4
Hok tốt nha!!!
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
4+42+43+...+426
=(4+42)+...+(425+426)
=4.(1+4)+...+425.(1+4)
=4.5+...+425.5
=5.(4+...+425) CHIA HẾT CHO 20 VÀ K CHIA HẾT CHO 21
\(B=\left(1+4+4^2\right)+...+\left(4^{66}+4^{67}+4^{68}\right)=21.1+...+21.4^{66}\)
\(B=21.\left(1+...+4^{66}\right)\)
Vậy tổng chia hết cho 21
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
\(1+4+4^2+4^3+.....+4^{2018}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+....+\left(4^{2016}+4^{2017}+4^{2018}\right)\)
\(=21+\left[4^3\left(1+4+4^2\right)\right]+....+\left[4^{2016}\left(1+4+4^2\right)\right]\)
\(=21+4^3\cdot21+....+4^{2016}\cdot21\)
\(=21\left(1+4^3+....+4^{2016}\right)\)
\(\Rightarrowđpcm\)