K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

a) Ta có: 10^21 + 5=100...00(21 c/s 0) + 5=100....05(20 c/s 0)

-Để 100....05(20 c/s 0) chia hết cho 3 thì: 1+0+0+...+0+5 (20 c/s 0)=6 - chia hết cho 3.  (1)

-mà 100....05(20 c/s 0) có c/s tận cùng là 5 => 100....05(20 c/s 0) chia hết cho 5 =>  10^21 + 5 chia hết cho 5 (2)

Từ (1) và (2) => 10^21 + 5 chia hết cho 3 và 5

b)Ta có: 10^n + 8=100...00(n c/s 0) + 8=100....08(n-1 c/s 0)

-Để 100....08(n-1 c/s 0) chia hết cho 9 thì: 1+0+0+...+0+8 (n-1 c/s 0)=9 - chia hết cho 9.  (1)

-mà 100....08(n-1 c/s 0) có c/s tận cùng là 8 => 100....08(n-1 c/s 0) chia hết cho 2 =>  10^n + 8 chia hết cho 2 (2)

Từ (1) và (2) =>10^n + 8 chia hết cho 2 và 9 (n thuộc N*)

 

 

21 tháng 9 2021

Tích cho mình nha

NM
9 tháng 11 2021

ta có :

undefined

undefined

A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5

16 tháng 10 2023

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

a) M = \(5+5^2+5^3+...+5^{80}\)

\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)

\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)

\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)

=> M chi hết cho 6 => điều phải chứng minh

24 tháng 1 2021

) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)

M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)

M= 5.6 + 5^3.6 + … + 5^79.6

M = 6(5+5^3+…+5^79) chia hết cho 6

b)  Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5

Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)

=> M = 5 + 52 + 53 + ... + 580  không chia hết cho 52 (do 5 không chia hết cho 52)

=> M chia hết cho 5 nhưng không chia hết cho 52

=> M không phải số chính phương

25 tháng 9 2021

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm

 

24 tháng 9 2021

a) B\(=\) 3 + 32 + 3+ ... + 360 

\(=\)(3+32)+(33+34)+...+(359+360)

\(=\)3(1+3)+33(1+3)+...+359(1+3)

\(=\)(3+1)(3+33+...+359)

\(=\)4(3+33+...+359)⋮4

⇒B⋮4

b) B\(=\)(3+32+33)+...+(358+359+360)

\(=\)30(3+32+33)+...+357(358+359+360)

\(=\)3+32+33(30+33+36+...+357)

\(=\)39(30+33+36+...+357)⋮13

⇒ B⋮13