K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023


Ta có: tam giác vuông EBH \(\sim\) tam giác vuông ABC (gt)
=>\(\dfrac{S\Delta EBH}{S\Delta ABC}=\left(\dfrac{BH}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta EBH}}{\sqrt{S\Delta ABC}}=\dfrac{BH}{BC}\left(1\right)\)
Ta có tam giác vuông FHC \(\sim\) tam giác vuông ABC (g.g)
=>\(\dfrac{S\Delta FHC}{S\Delta ABC}=\left(\dfrac{HC}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HC}{BC}\left(2\right)\)
\(\)Từ (1)và (2) =>\(\dfrac{\sqrt{S\Delta EBH}+\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HB+HC}{BC}=\dfrac{BC}{BC}=1\)
Vậy \(\sqrt{S\Delta_{EBH}}+\sqrt{S\Delta_{FHC}}=\sqrt{S\Delta_{ABC}}\left(đpcm\right)\)
chucbanhoctot!

26 tháng 8 2023

thực ra ở đây ko thể c/m đc yêu cầu của bạn đâu, cần phải có AEHF là hcn mới ra cơ ạ 

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

27 tháng 10 2020

ai giải giúp mk vs

đag cần gấp

27 tháng 10 2020

a) Ta có: AB.cosB + cosC.AC=\(\frac{AB^2}{BC}+\frac{AC^2}{BC}\)=\(\frac{BC^2}{BC}\)=BC

b) CMR: tam giác ABC đồng dạng với tam giác AFE(g-g)

\(\Rightarrow\)\(\frac{AB}{AF}=\frac{BC}{EF}\)

\(\Rightarrow\)AB.EF=BC.AF

CMR: tam giác ABH đồng dạng với tam giác AHE (g-g)

\(\Rightarrow\)\(\frac{AB}{AH}=\frac{AH}{AE}\)

\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AH.AB}{AH^2}\)\(\Rightarrow\)\(\frac{AH}{AE}=\frac{EF.AB}{AH^2}\)

\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AF.BC}{AH^2}\)\(\Rightarrow\frac{AH^3}{BC}=AE.AF\)

Ta có:\(S_{AEHF}=AE.AF\)

\(\Rightarrow S_{AEHF}=\frac{AH^3}{BC}\)

a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)

\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)

CH=32(cm)

\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)

\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)

b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)

\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)

\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)

20 tháng 9 2015

Ông Thắng chỉ cần ấn nhầm vài cái xóa là được mà@@

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)