K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

e) n2 + 2n + 6 chia hết cho n + 4

n2 + 4n - 2n + 6 chia hết cho n + 4

n.(n + 4) - 2n + 6 chia hết cho n + 4

2n + 6 chia hết cho n + 4

2n + 8 - 2 chia hết cho n + 4

2.(n + 4) - 2 chia hết cho n + 4

=> - 2 chia hết cho n + 4

=> n + 4 thuộc Ư(-2) = {1 ; -1 ; 2 ; -2}

Xét 4 trường hợp ,ta có :

n + 4 = 1         => n = -3

n + 4 = -1        => n = -5

n + 4 = 2         => n = -2

n + 4 = -2        => n = -6

3 tháng 7 2016

a) n+3 chia hết cho n-2

=>n-2+5 chia hết cho n-2

=> 5 chia hết cho n-2

U(5)=1;5

=>n=3;7 

3 tháng 7 2016

Ta có: n + 3 chia hết cho n - 2

<=> n - 2 + 5 chia hết n - 2

=> 5 chia hết n - 2

=> n - 2 thuộc Ư(5) = {-1;1;-5;5}

=> n = {1;3;-3;7}

21 tháng 12 2020

biết rồi

15 tháng 11 2021

a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)

b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)

\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)

c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)

\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)

d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)

\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)

1 tháng 11

Bạn này làm sai r

12 tháng 7 2019

a, 4n - 7 ⋮ n - 1

=> 4n - 4 - 3 ⋮ n - 1

=> 4(n - 1) - 3 ⋮ n - 1

=> -3 ⋮ n - 1

=> n - 1 thuộc Ư(-3)

=> n - 1 thuộc {-1; 1; -3; 3}

=> n thuộc {0; 2; -2; 4}

AH
Akai Haruma
Giáo viên
2 tháng 1

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

AH
Akai Haruma
Giáo viên
2 tháng 1

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)