K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

ko biết

26 tháng 11 2017

Bạn vẽ hình đi mk làm cho nha

26 tháng 11 2017

ban cu lam ho minh phan b mik h nhieu cho

11 tháng 3 2021

Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).

Vậy B, E, F thẳng hàng.

11 tháng 3 2021

Trúc Giang Bạn cần giải thích đoạn nào vậy?

Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).

Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).

Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.

17 tháng 10 2022

a: Xét ΔEDC và ΔFAD có

góc EDC=góc FAD

DC=AD
góc ECD=góc FDA

Do đó: ΔEDC=ΔFAD

=>DE=DF(1)

góc ADC=góc FDA+góc FDE+góc EDC

=90-(15+15)=60 độ(2)

Từ (1) và (2) suy ra ΔDEF đều

b: góc ECB=90-15=75 độ

góc EDA=15+60=75 độ

Xét ΔADE và ΔBCE có

ED=EC

góc ADE=góc BCE

AD=BC

Do đó: ΔADE=ΔBCE
=>AE=BE(3)

góc AFD=180-15-15=150 độ

góc AFE=360-150-60=150 độ

Xét ΔAFD và ΔAEF có

AF chung

góc AFD=góc AFE

DF=EF

Do đó: ΔAFD=ΔAEF

=>AE=AD=AB(4)

Từ (3) và (4) suy ra ΔABE đều

25 tháng 11 2021

undefined

27 tháng 7 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ EDC và  ∆ FDA, tacó:  ∠ (EDC) =  ∠ (FDA) =  15 0

DC = AD (gt)

∠ (ECD) =  ∠ (FAD) =  15 0

Suy ra:  ∆ EDC =  ∆ FDA (g.c.g)

⇒ DE = DF

⇒  ∆ DEF cân tại D

Lại có:  ∠ (ADC) =  ∠ (FDA) +  ∠ (FDE) +  ∠ (EDC)

⇒  ∠ (FDE) =  ∠ (ADC) -( ∠ (FDA) +  ∠ (EDC) )=  90 0  - ( 15 0  +  15 0 ) =  60 0

Vậy  ∆ DEF đều.