tìm giá trị của k để pt sau có 3 nghiệm pb :
\(\left(x-3\right)\left[x^2+\left(k-1\right)x+k^2\right]=0\)
tìm giá trị của k để pt sau có 2 nghiệm pb và cùng âm :
\((x-1)(x^2+kx+k-1)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
a) ta có : \(\left(x-3\right)\left[x^2+\left(x-1\right)x+k^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\2x^2-x+k=0\end{matrix}\right.\) để phương trình có 3 nghiệm phân biệt
\(\Leftrightarrow2x^2-x+k\) có 2 nghiệm và 2 nghiệm này phải khác 3
\(\Leftrightarrow\left\{{}\begin{matrix}2.3^2-3+k\ne0\\1^2-4.2.k>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ne-15\\k< \dfrac{1}{8}\end{matrix}\right.\)
vậy ...
b) tương tự
2) sữa đề
ta có : \(x^2+3\left(m-3x^2\right)^2=m\)
\(\Leftrightarrow x^2+3\left(m^2-6mx^2+9x^4\right)=m\)
\(\Leftrightarrow27x^4-\left(18m-1\right)x^2-3m^2-m=0\)
phương trình có nghiệm khi phương trình \(27t^2-\left(18m-1\right)t-3m^2-m=0\) có ít nhất 1 nghiệm dương
->...
a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)
\(\Delta=\left(k-1\right)^2-2k+5\)
\(=k^2-4x+6=\left(k-2\right)^2+2>0\)
=> PT luôn có nghiệm với mọi k
\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}=1\)
\(\Leftrightarrow\left(k-1\right)x=2-k\)
Với \(k=1\) thì phương trình vô nghiệm
Với \(k\ne1\)thì
\(x=\frac{2-k}{k-1}>0\)
\(\Leftrightarrow1< k< 2\)
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
Lời giải:Đặt $x^2=t$ thì PT ban đầu trở thành:
$t^2-(3m+1)t+6m-2=0 (1)$Để PT ban đầu có 4 nghiệm phân biệt thì $(1)$ phải có 2 nghiệm dương phân biệt.
Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta=(3m+1)^2-4(6m-2)>0\\ S=3m+1>0\\ P=6m-2>0\end{matrix}\right.\Leftrightarrow m\neq 1; m>\frac{1}{3}\)
Khi đó, 4 nghiệm phân biệt là:
$x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}$
Hiển nhiên $x_1, x_3>-4$
Giờ ta cần $-\sqrt{t_1}; -\sqrt{t_2}>-4$
$\Leftrightarrow \sqrt{t_1}, \sqrt{t_2}< 4$
$\Rightarrow t_1, t_2< 16$. Điều này xảy ra khi:
\(\left\{\begin{matrix} t_1+t_2<32\\ (t_1-16)(t_2-16)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1+t_2< 32\\ t_1t_2-16(t_1+t_2)+256>0\end{matrix}\right.\)
\(\left\{\begin{matrix} 3m+1<32\\ 238-42m>0\end{matrix}\right.\Leftrightarrow m< \frac{17}{3}\)
Vậy \(m\in (\frac{1}{3}; \frac{17}{3}); m\neq 1\)
\(a,< =>\Delta=0\)
\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)
\(< =>k^2+2k+1-8-4k=0\)
\(< =>k^2-2k-7=0\)
\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)
b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)
\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)
\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)
a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)
\(=k^2+2k+1-4k-8\)
\(=k^2-2k-7\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow k^2-2k-7=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)
Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)
Với $k=0$ ta có:$x=-2$.Suy ra $k=0$ thỏa.
Với $k \ne 0$:
$\Delta =(1-2k)^2-4k(k-2)=4k+1$
Để phương trình đã cho có nghiệm hữu tỉ thì $\Delta$ phải là một số chính phương.
Do $4k+1$ là số lẻ nên ta giả sử:
$4k+1=(2m+1)^2=4m^2+4m+1\Rightarrow k=m(m+1)$
Do $k \in Z$ và kết hợp 2 trường hợp trên ta suy ra:
$k$ là tích của hai số nguyên liên tiếp.
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3