cho B=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{2005}\)
CMR :B<\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow\frac{1}{3}.B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)
\(\Rightarrow B-\frac{1}{3}.B=\frac{1}{3}-\frac{1}{3^{2006}}\)
\(\frac{2}{3}.B=\frac{1}{3}-\frac{1}{3^{2006}}\)
\(B=\left(\frac{1}{3}-\frac{1}{3^{2006}}\right):\frac{2}{3}\)
\(B=\frac{1}{3}:\frac{2}{3}-\frac{1}{3^{2006}}:\frac{2}{3}=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)
ta có \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}.\)
\(\Rightarrow3B=1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)
\(\Leftrightarrow3B-B=1+\frac{1}{3}-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^2}+...+\frac{1}{3^{2004}}-\frac{1}{3^{2004}}-\frac{1}{3^{2005}}\)
\(\Leftrightarrow2B=1-\frac{1}{3^{2005}}\) \(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}\left(đpcm\right)\)
Có :
3B = 1 +1/3 + 1/3^2 + ...... + 1/3^2004
2B = 3B - B = ( 1 + 1/3 + 1/3^2 + ....... + 1/3^2004 ) - ( 1/3 + 1/3^2 + ...... + 1/3^2004 )
= 1 - 1/3^2004 < 1
=> B < 1/2
Tk mk nha
Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Không mất tính tổng quát, ta lấy \(a=-b\), ta có:
\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)
\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)
Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)
\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)
Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)
Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.
1. Ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)
=> \(a-2\sqrt{ab}+b\ge0\)
=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)
=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)
=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);
(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)
1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)
Áp dụng BĐT Cô-si:
\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)
Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)
Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)
Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :
\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}
\)
\(2B=1-\frac{1}{3^{2004}}\)
\(B=\frac{1}{2}-\frac{1}{2\cdot3^{2004}}\)
Do đó B<\(\frac{1}{2}\)
chúc thành công
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)
Với \(a+b=0\)
Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)
Tương tự cho 2 trường hợp còn lại ta có ĐPCM
Có B=\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+...+\(\frac{1}{3^{2004}}\)+\(\frac{1}{3^{2005}}\)
=>3B=3.(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))
=>3B=1+\(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
=>3B-B=(1+\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\))-(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))
=>2B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-....-\frac{1}{3^{2004}}-\frac{1}{3^{2005}}\)
=>2B=1-\(\frac{1}{3^{2005}}\)
=>B=(\(1-\frac{1}{3^{2005}}\)):2
Mà \(\left(1-\frac{1}{3^{2005}}\right)< \frac{1}{2}\)=>\(\left(1-\frac{1}{3^{2005}}\right):2< \frac{1}{2}\)
=>B<\(\frac{1}{2}\)(đpcm)
bạn ơi mình sửa cho bạn nè!
B=(1-\(\dfrac{1}{3^{2005}}\)) :2 = \(\dfrac{1}{2}\)-\(\dfrac{1}{\dfrac{3^{2005}}{2}}\) < \(\dfrac{1}{2}\)
1.
A=19^5^1^8^9^0+2^9^1^9^6^9
Ta luôn có 1a=1 với a là số nguyên dương
=>19^5^1^8^9^0=195 và 2^9^1^9^6^9=29
=>A=195+29=(192)2.19+(24)2.2=(...1)2.19+(...6)2.2=...1.19+...6.2=...1
Vậy A có tận cung là 1.
2.
B=1/3+1/32+...+1/32005
3B=1+1/3+1/32+...+1/32004
3B-B=1-1/32005
2B=1-1/32005<1
=>2B<1=>B<1/2
Vậy B<1/2.
.
.
1) Ta có:
\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}\)
Mà 195=194+1=...1.19=...19
29=22.4+1=...6 .2=...2
=>A=...19 + ...2= ...1
Vậy A có chữ số tận cùng là 1
Có :
3B = 1 + 1/3 + 1/3^2 + .... + 1/3^2004
2B = 3B - B = ( 1 + 1/3 + 1/3^2 + ..... + 1/3^2004 ) - ( 1/3 + 1/3^2 + 1/3^3 + ..... + 1/3^2005 )
= 1 - 1/3^2005 < 1
=> B < 1 : 2 = 1/2
=> ĐPCM
Tk mk nha
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^{2005}}< 1\)
\(\Rightarrow B< \frac{1}{2}\)
Sửa đề: Cho \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\). CMR: \(B< \frac{1}{2}\)
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\). Lại có:
\(3B-B=2B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)
\(2B=1-\frac{1}{3^{2005}}< 1\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}^{\left(đpcm\right)}\)