K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

Sửa đề: Cho \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\). CMR: \(B< \frac{1}{2}\)

Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\). Lại có:

\(3B-B=2B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)

\(2B=1-\frac{1}{3^{2005}}< 1\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}^{\left(đpcm\right)}\)

10 tháng 9 2018

Ta có \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

\(\Rightarrow\frac{1}{3}.B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)

\(\Rightarrow B-\frac{1}{3}.B=\frac{1}{3}-\frac{1}{3^{2006}}\)

\(\frac{2}{3}.B=\frac{1}{3}-\frac{1}{3^{2006}}\)

\(B=\left(\frac{1}{3}-\frac{1}{3^{2006}}\right):\frac{2}{3}\)

\(B=\frac{1}{3}:\frac{2}{3}-\frac{1}{3^{2006}}:\frac{2}{3}=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)

7 tháng 3 2018

ta có      \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}.\)

      \(\Rightarrow3B=1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)

    \(\Leftrightarrow3B-B=1+\frac{1}{3}-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^2}+...+\frac{1}{3^{2004}}-\frac{1}{3^{2004}}-\frac{1}{3^{2005}}\)

 \(\Leftrightarrow2B=1-\frac{1}{3^{2005}}\)   \(\Rightarrow B=\frac{1-\frac{1}{3^{2005}}}{2}< \frac{1}{2}\left(đpcm\right)\)

7 tháng 3 2018

Có : 

3B = 1  +1/3 + 1/3^2 + ...... + 1/3^2004

2B = 3B - B = ( 1 + 1/3 + 1/3^2 + ....... + 1/3^2004 ) - ( 1/3 + 1/3^2 + ...... + 1/3^2004 )

     = 1 - 1/3^2004 < 1

=> B < 1/2

Tk mk nha

3 tháng 1 2017

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}} \)
\(2B=1-\frac{1}{3^{2004}}\)
\(B=\frac{1}{2}-\frac{1}{2\cdot3^{2004}}\)
Do đó B<\(\frac{1}{2}\)
chúc thành công

3 tháng 2 2017

Có B=\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+...+\(\frac{1}{3^{2004}}\)+\(\frac{1}{3^{2005}}\)

=>3B=3.(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))

=>3B=1+\(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

=>3B-B=(1+\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\))-(\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\))

=>2B=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-....-\frac{1}{3^{2004}}-\frac{1}{3^{2005}}\)

=>2B=1-\(\frac{1}{3^{2005}}\)

=>B=(\(1-\frac{1}{3^{2005}}\)):2

\(\left(1-\frac{1}{3^{2005}}\right)< \frac{1}{2}\)=>\(\left(1-\frac{1}{3^{2005}}\right):2< \frac{1}{2}\)

=>B<\(\frac{1}{2}\)(đpcm)

5 tháng 3 2018

bạn ơi mình sửa cho bạn nè!

B=(1-\(\dfrac{1}{3^{2005}}\)) :2 = \(\dfrac{1}{2}\)-\(\dfrac{1}{\dfrac{3^{2005}}{2}}\) < \(\dfrac{1}{2}\)

13 tháng 1 2018

Có : 

3B = 1 + 1/3 + 1/3^2 + .... + 1/3^2004

2B = 3B - B = ( 1 + 1/3 + 1/3^2 + ..... + 1/3^2004 ) - ( 1/3 + 1/3^2 + 1/3^3 + ..... + 1/3^2005 )

                  = 1 - 1/3^2005 < 1

=> B < 1 : 2 = 1/2

=> ĐPCM

Tk mk nha

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^{2005}}< 1\)

\(\Rightarrow B< \frac{1}{2}\)

21 tháng 8 2019

\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)

\(\Rightarrow3B-B=\left(1+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+...+\frac{1}{3^{2005}}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^{2005}}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)

21 tháng 8 2019

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)

\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\right)\)

\(2B=1-\frac{1}{3^{2005}}\)

\(B=\frac{1-\frac{1}{3^{2005}}}{2}\)

\(B=\frac{1}{2}-\frac{1}{\frac{3^{2005}}{2}}\)

Vi  \(\frac{1}{2}-\frac{1}{\frac{3^{2005}}{2}}< \frac{1}{2}\)

\(\Rightarrow B< \frac{1}{2}\left(dpcm\right)\)

10 tháng 2 2016

1.

A=19^5^1^8^9^0+2^9^1^9^6^9

Ta luôn có 1a=1 với a là số nguyên dương

=>19^5^1^8^9^0=195 và 2^9^1^9^6^9=29

=>A=195+29=(192)2.19+(24)2.2=(...1)2.19+(...6)2.2=...1.19+...6.2=...1

Vậy A có tận cung là 1.

2.

B=1/3+1/32+...+1/32005

3B=1+1/3+1/32+...+1/32004

3B-B=1-1/32005

2B=1-1/32005<1

=>2B<1=>B<1/2

Vậy B<1/2.

.

.

10 tháng 2 2016

1) Ta có:

\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}\)

Mà 195=194+1=...1.19=...19

      29=22.4+1=...6 .2=...2

=>A=...19 + ...2...1

Vậy A có chữ số tận cùng là 1