tìm tất cả các số tự nhiên n để n+6 chia hết cho 3n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+6 chia hết cho 3n-2
=>3(n+6) chia hết cho 3n-2
=>3n+18 chia hết cho 3n-2
=>[3n+18-(3n-2)] chia hết choa 3n-2
=>(3n+18-3n+2) chia hết cho 3n-2
=>20 chia hết cho 3n-2
=> 3n-2\(\in\left\{1;2;4;5;10;20\right\}\)
Lập bảng là ra
Dâu # là chia hết nhé :
Ta có :
n + 6 # 3n -2
=> 3(n + 6) # 3n - 2
=> 3n + 18 # 3n - 2
=> (3n - 2) + 20 # 3n-2
mà 3n - 2 # 3n - 2
=> 20 # 3n - 2
=> \(3n-2\in\left\{1;2;4;5;10;20\right\}\)
=> \(3n\in\left\{3;4;6;7;12;22\right\}\)(loại 3n = 4;7;22 vì các số đó ko chia hết cho 3)
=> \(n\in\left\{1;2;4\right\}\)
\(3n+13⋮n+1\)
\(\Leftrightarrow n+1\in\left\{2;5;10\right\}\)
hay \(n\in\left\{1;4;9\right\}\)
\(3n+13⋮n+1\)
\(3\left(n+1\right)+10⋮n+1\)
\(10⋮n+1\)
\(\Rightarrow n+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Tự lập bảng nha !
https://olm.vn/hoi-dap/detail/63079091964.html
a)
a b ¯ + b a ¯ = 10 a + b + 10 b + a = 11 a + 11 b = 11 ( a + b ) ⋮ 11
b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố
n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3
Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.
Vậy với n = 0 thì 3n + 6 là số nguyên tố.
ta có ; 3n+13 chia hết cho n+1
suy ra 3n+3+10chia het cho n+1
mà 3n+3 chia hết cho n+1
suy ra 10 chia hết cho n+1
suy ra n +1 thuộc ước của 10
suy ra n+1=10;5;2;1;-10;-5;-2;-1
vì n là số tự nhiện suy ra n= 9;4;1;0
ta có ; 3n+13 chia hết cho n+1
suy ra 3n+3+10chia het cho n+1
mà 3n+3 chia hết cho n+1
suy ra 10 chia hết cho n+1
suy ra n +1 thuộc ước của 10
suy ra n+1=10;5;2;1;-10;-5;-2;-1
vì n là số tự nhiện suy ra n= 9;4;1;0
n+6 chia hết cho 3n-2
=> 3n+18 chia hết cho 3n-2
=> 3n-2+20 chia hết cho 3n-2
Vì 3n-2 chia hết cho 3n-2
=> 20 chia hết cho 3n-2
=> 3n-2 thuộc Ư(20)
KL: n thuộc {1; 3; 4}