I . Rút gọn biểu thức
a. \(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x+y\right)^2}{2}}\)
b. \(\dfrac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
Ha Hoang CTV, sao bạn bỏ được dấu giá trị tuyệt đối của 1-2a vậy??
a) Ta có: \(B=\left(\dfrac{3}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{3\sqrt{x}-6-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-8}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
b) Để \(B=\dfrac{1}{3}\) thì \(\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\)
\(\Leftrightarrow3\sqrt{x}=\sqrt{x}+2\)
\(\Leftrightarrow2\sqrt{x}=2\)
\(\Leftrightarrow x=1\)(thỏa ĐK)
a) B= \(\left(\dfrac{3\left(\sqrt{x}-2\right)-1\left(\sqrt{x}+2\right)}{x-4}\right):\left(\dfrac{\sqrt{x}-6+1\left(\sqrt{x}-2\right)}{x-2\sqrt{x}}\right)\)
\(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{2\sqrt{x}-8}\)=\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
b) Để B=\(\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2=3\sqrt{x}\Rightarrow x=1\)
\(=\dfrac{2\sqrt{5}\left|a\left(2a-1\right)\right|}{2a-1}=\dfrac{2a\left(2a-1\right)\sqrt{5}}{2a-1}=2a\sqrt{5}\)
\(=\dfrac{2\sqrt{5}\cdot a\left(2a-1\right)}{2a-1}=2a\sqrt{5}\)
\(a.A=\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x+y\right)\sqrt{3}}{2}=\dfrac{\sqrt{3}}{x-y}\) ( x # y )
\(b.\dfrac{1}{2x-1}.\sqrt{5a^4\left(1-4x+4a^2\right)}=\dfrac{1}{2a-1}.\left(2a-1\right)a^2\sqrt{5}=a^2\sqrt{5}\) ( a # \(\dfrac{1}{2}\) )
a) \(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x+y\right)^2}{2}}=\dfrac{2\cdot\left(x+y\right)\cdot\sqrt{3}}{\left(x+y\right)\cdot\left(x-y\right)\cdot\sqrt{2}}=\dfrac{2\sqrt{3}}{\left(x-y\right)\cdot\sqrt{2}}=\dfrac{2\sqrt{6}}{2\left(x-y\right)}=\dfrac{\sqrt{6}}{x-y}\)
b) \(\dfrac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}=\dfrac{2}{2a-1}\cdot\sqrt{5a^2\left[\left(2a\right)^2-2\cdot2\cdot a+1^2\right]}=\dfrac{2}{2a-1}\cdot\sqrt{5a^2\left(2a-1\right)^2}=\dfrac{2}{2a-1}\cdot a\cdot\left(2a-1\right)\cdot\sqrt{5}=\dfrac{2a\left(2a-1\right)\sqrt{5}}{2a-1}=2a\sqrt{5}\)