so sánh các cặp lũy thừa : C = 20 + 21 + 22 + 23 + ... + 22014 và D = 22015 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1+2+2^2+...+2^{2015}\)
\(2A=2\cdot\left(1+2+2^2+...+2^{2015}\right)\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=2+2^2+...+2^{2016}-1-2-2^2-...-2^{2015}\)
\(A=2^{2016}-1\)
A không thể biết dưới dạng lũy thừa của 8 được
a) 523 = 5 x 522
Do 5 x 522 < 6 x 522
=> 523 < 6 x 522
b) 216 = 213 x 23 = 213 x 8
Do 7 x 213 < 213 x 8
=> 7 x 213 < 216
c) 2115 = 315 x 715
275 x 498 = (33)5 x (72)8 = 315 x 716
Vì 315 x 715 < 315 x 716
=> 2115 < 275 x 498
Ủng hộ mk nha ^_-
A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016
=7(1+2^3+...+2^2013)+2^2016
Vì 2^2016 chia 7 dư 1
nên A chia 7 dư 1
a) Ta có: \(8^{28}=2^{84}=16^{21}\)
Mà \(16>15\Rightarrow16^{21}>15^{21}\Rightarrow8^{28}>15^{21}\)
Vậy...
b) \(5^{91}>5^{90}=125^{30}\) \(\left(1\right)\)
\(11^{59}< 11^{60}=121^{30}\) \(\left(2\right)\)
Lại có: \(125>121\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra \(5^{91}>11^{59}\)
a) 523 và 6*522
523 = 5 * 522
Vì 5<6 suy ra 5 * 522 < 6 * 522 hay 523 < 6*522
Vậy: 523 < 6 * 522
b) 7 * 213 và 216
216 = 23 * 213 = 8 * 213
Vì 7 < 8 suy ra 7 * 213 < 8 * 213 hay 7 * 213 < 216
Vậy: 7 * 213 < 216
c) 2115 và 275 * 498
275 * 498 = [(3)3]5 * [(7)2]8 = 315 * 716 = 315 * 715 *7 = (3*7)15 *7 = 2115 * 7
Vì 2115 < 2115 * 7 suy ra 2115 < 275 * 498
Vậy: 2115 < 275 * 498
a) 2711 và 818
\(27^{11}=\left(3^3\right)^{11}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{4.8}=3^{32}\)
Vì 333 > 332 ⇒ 2711 >818
b) 523 và 6 . 522
\(5^{23}=5^{22}.5\)
Vì 522 . 5 < 6 . 522 ⇒ 523 < 6 . 522
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)
help me
Ta có : \(C=2^0+2^1+2^2+2^3+...+2^{2014}\)
\(\Rightarrow\) \(2C=2+2^2+2^3+2^4+2^5+...+2^{2014}+2^{2015}\)
\(\Rightarrow\) \(C=2^{2015}-1\)
\(\Rightarrow\) \(C=D\)