Tính nhanh.
8/9 x 15/16 x 24/25 x...x 2499/2500
/ là dấu gạch phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8/9 x 15/16 x 24/25 x...x 2499/2500
= \(\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\frac{4\times6}{5\times5}\times...\times\frac{49\times51}{50\times50}\)
= \(\frac{2\times4\times3\times5\times4\times6\times...\times49\times51}{3\times3\times4\times4\times5\times5\times...\times50\times50}\)
= \(\frac{2\times51}{3\times50}\)
= \(\frac{17}{25}\)
\(\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{2499}{2500}=\frac{8.15...2499}{9.16...2500}=\frac{2.4.3.5...49.51}{3.3.4.4...50.50}=\frac{\left(2.3.4...49.50\right).\left(4.5...49.51\right)}{\left(2.3.4...49.50\right).\left(3.4.5...49.50\right)}=\frac{51}{3.50}\)\(=\frac{17}{50}\)
a) Ta có \(A=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\dfrac{4\cdot6}{5\cdot5}\cdot...\cdot\dfrac{49\cdot51}{50\cdot50}\)
\(=\dfrac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot49\cdot51}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot50\cdot50}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\cdot\dfrac{4\cdot5\cdot6\cdot...\cdot51}{3\cdot4\cdot5\cdot...\cdot50}\)
= \(\dfrac{2}{50}\cdot17=\dfrac{17}{25}\)
b) Vì n nguyên nên 3n - 1 nguyên
Để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên thì 12 ⋮ ( 3n - 1 ) hay ( 3n - 1 ) ϵ Ư( 12 )
Ư( 12 ) = { \(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\) }
Lập bảng giá trị
3n - 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | \(\dfrac{2}{3}\) | 0 | 1 | \(\dfrac{-1}{3}\) | \(\dfrac{3}{4}\) | \(\dfrac{-2}{3}\) | \(\dfrac{5}{3}\) | -1 | \(\dfrac{7}{3}\) | \(\dfrac{-5}{3}\) | \(\dfrac{13}{3}\) | \(\dfrac{-11}{3}\) |
Vì n nguyên nên n ϵ { 0; 1; -1 }
Vậy n ϵ { 0; 1; -1 } để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên
\(\frac{8}{9}\). \(\frac{15}{16}\). \(\frac{24}{25}\). ..... . \(\frac{2499}{2500}\)
= \(\frac{2.4}{3.3}\). \(\frac{3.5}{4.4}\). \(\frac{4.6}{5.5}\). .... . \(\frac{49.51}{50.50}\)
= \(\frac{2.4.3.5.4.6.49.51}{3.3.4.4.5.5.....50.50}\)= \(\frac{2.51}{3.50}\)= \(\frac{17}{25}\)