K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Giả sử a+b không chia hết cho 5

Suy ra:

\(\left(a+b\right)^5\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4\)không chia hết cho 5

\(\Leftrightarrow\left(a^5+b^5\right)+5\cdot A\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5\)không chia hết cho 5

Phản giả thiết

Vậy ......

Nếu không sử dụng phản chứng ta có thể chứng minh bằng pp khai triển giả thiết

\(a^5+b^5=\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)⋮5\)

Suy ra: \(\left(a+b\right)⋮5\)

Cũng có thể giải bằng quy nạp toán học

7 tháng 4 2018

a)Nếu n chia hết  cho 5=>n2 chia hết cho 5 mà 5n chia hết cho 5 va 10 chia hết cho 5

=>A chia hết cho 5

mới biết phần a thui

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5