Cho tam giác ABC biết BAC = 60,AD là đường phân giác ( D thuộc BC) trên nửa mặt phẳng bờ BC chứa điểm A ve ACx=30 .Chứng minh AD song song với Cx
Nhớ vẽ thêm hình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Am là tia phân giác của góc A ; Cn là tia phân giác của góc C
Ta có
\(\widehat{BAC}=\widehat{ACx}\) (Cx//AB ; hai góc so le trong )
Mặt khác
\(\widehat{A1}=\frac{1}{1}\widehat{BAC}\)( Am là tia phân giác )
\(\widehat{C1}=\frac{1}{2}\widehat{ACx}\) ( Cn là tia phân giác )
\(\Rightarrow\widehat{A1}=\widehat{C1}\)
Mà \(\widehat{A1};\widehat{C1}\) so le trong
=> Am//Cn (đpcm)
bạn Silver bullet ơi , dòng thứ 4 từ câu mặt khác của bn ở dưới mk thay như vậy đc ko bn ?
A1=1.BAC(...)
C1=2.ACX(...)
NHƯ VẬY ĐC KO BN ?
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: BD=CD
b: Ta có: ΔABC cân tại A
mà AD là tia phân giác
nên AD là đường cao
Bạn tự vẽ hình nhé
a) Xét \(\Delta ABD\)và\(\Delta ACD\)có:
AB = AC ( gt)
\(\widehat{BAD}=\widehat{CAD}\)(gt)
AD chung
\(\Rightarrow\)\(\Delta ABD=\Delta ACD\left(c.g.c\right)\)
a) Có B A D ^ = A B C ^ ( giả thiết),
Mà hai góc ở vị trí so le trong nên AD // BC (theo tính chất hai đường thẳng song song).
b) Tương tự ý a), chứng minh được AE // BC
Theo tiên đề ơ-clit, hai đường thẳng AE và AD trùng nhau. Từ đó ba điểmD, A, E thẳng hàng.
a) Có B A D ^ = A B C ^ ( giả thiết),
Mà hai góc ở vị trí so le trong nên AD // BC (theo tính chất hai đường thẳng song song).
a) Tương tự ý a), chứng minh
b) được AE // BC
Theo tiên đề ơ-clit, hai đường thẳng AE và AD trùng nhau. Từ đó ba điểm D, A, E thẳng hàng
Lưu ý : nếu ai có cau trả lời hay nhất và hình đúng nhất thì mình cho
Có 2 cách vẽ tia Cx như 2 hình vẽ sau ban nhé: