Cho tam giác ABC, A(1;1), B(3;0), C (-1;4)
a) tìm tọa độ trung điểm của M , N , P lần lượt là trung điểm của AB, BC, CA
b) tìm tọa độ trong tâm G của tam giác ABC
c) tìm tọa độ của các vecto MN, vecto NP, vecto PM.
hộ mk vs.......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D vàΔACE vuông tại E có
góc A chung
Do đó: ΔABD đồng dạng với ΔACE
b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
=>góc BED+góc BCD=180 độ
Xét \(\Delta AMC\)và \(\Delta ABC\)có
Chung chiều cao hạ từ A xuống BC
\(MC=\frac{1}{4}BC\)
=>\(S_{AMC}=\frac{1}{4}S_{ABC}\)
Mặt khác \(\Delta AMC\)và \(\Delta ABC\)có chung đáy AC =>\(MH=\frac{1}{4}BK\)
a) Vì M là trung điểm của AB nên ta có:
\(\left\{{}\begin{matrix}x_M=\dfrac{x_A+x_B}{2}\\y_M=\dfrac{y_A+y_B}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_M=\dfrac{1+3}{2}\\y_M=\dfrac{1+0}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_M=2\\y_M=\dfrac{1}{2}\end{matrix}\right.\)
Tọa độ điểm M là \(\left(2;\dfrac{1}{2}\right)\)
Vì N là trung điểm của BC nên ta có:
\(\left\{{}\begin{matrix}x_N=\dfrac{x_B+x_C}{2}\\y_N=\dfrac{y_B+y_C}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=2\end{matrix}\right.\)
Tọa độ điểm N là \(\left(1;2\right)\)
Vì P là trung điểm CA nên ta có:
\(\left\{{}\begin{matrix}x_P=\dfrac{x_C+x_A}{2}\\y_P=\dfrac{y_C+y_A}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_P=0\\y_P=\dfrac{5}{2}\end{matrix}\right.\)
Tọa độ điểm P là \(\left(0;\dfrac{5}{2}\right)\)
b) Vì G là trọng tâm của tam giác ABC nên ta có:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_G=1\\y_G=\dfrac{5}{3}\end{matrix}\right.\)
Tọa độ điểm G là \(\left(1;\dfrac{5}{3}\right)\)
c)\(\overline{MN}=\left(-1;\dfrac{3}{2}\right)\)
\(\overline{NP}=\left(-1;\dfrac{1}{2}\right)\)
\(\overline{PM}=\left(2;-2\right)\)
cảm ơn vì sự nhiệt tình của bn