K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

ta có : \(C=sin^215+sin^235+sin^255+sin^275\)

\(=sin^215+sin^2\left(90-15\right)+sin^235+sin^2\left(90-35\right)\)

\(=sin^215+cos^215+sin^235+cos^235=1+1=2\)

2 tháng 10 2018

cảm ơn bn Mysterious Person nha!

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\cos {0^o} = 1;\;\cos {120^o} =  - \frac{1}{2}\)

Lại có: \(\cos {140^o} =  - \cos \left( {{{180}^o} - {{40}^o}} \right) =  - \cos {40^o}\)  

\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)

Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)  

\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)

\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

Ta có: \(\tan {115^o} =  - \tan \left( {{{180}^o} - {{115}^o}} \right) =  - \tan {65^o}\)

Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)

\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Ta có: \(\cot {100^o} =  - \cot \left( {{{180}^o} - {{100}^o}} \right) =  - \cot {80^o}\)

Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o}  =- \tan {10^o}\)

\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)

10 tháng 8 2018

mk bỏ dấu độ nha . trong toán người ta cho phép

a) ta có : \(cos^215+cos^225+cos^235+cos^245+cos^255+cos^265+cos^275\)

\(=cos^215+cos^275+cos^225+cos^265+cos^235+cos^255+cos^245\) \(=cos^215+cos^2\left(90-15\right)+cos^225+cos^2\left(90-25\right)+cos^235+cos^2\left(90-35\right)+cos^245\) \(=cos^215+sin^215+cos^225+sin^225+cos^235+sin^235+cos^245\)

\(=1+1+1+\dfrac{1}{2}=\dfrac{7}{2}\)

b) ta có : \(sin^210-sin^220+sin^230-sin^240-sin^250-sin^270+sin^280\)

\(=sin^210+sin^280-sin^220-sin^270-sin^240-sin^250+sin^230\) \(=sin^210+sin^2\left(90-10\right)-sin^220-sin^2\left(90-20\right)-sin^240-sin^2\left(90-40\right)+sin^230\) \(=sin^210+cos^210-sin^220-cos^220-sin^240-cos^240+sin^230\) \(=1-1-1+\dfrac{1}{4}=\dfrac{-3}{4}\)

31 tháng 7 2018

\(A=sin^215^o+sin^225^o+sin^235^o+sin^245^o+sin^255^o+sin^265^o+sin^275^o\)

\(A=cos^275^o+cos^265^o+cos^255^o+cos^245^o+sin^255^o+sin^265^o+sin^275^o\)

\(A=\left(cos^275^o+sin^275^o\right)+\left(cos^265^o+sin^265^0\right)+\left(cos^255^o+sin^255^o\right)+cos^245^o\)

\(A=1+1+1+0,5\)

\(A=3,5\)

17 tháng 9 2021

 Tại sao lại cos 75 cộng với sin 75 lại = 1 bạn ơi mình bấm máy tính ko đc =(((

 

NV
19 tháng 2 2020

\(A=cos^212+sin^2\left(90-78\right)+cos^21+sin^2\left(90-89\right)\)

\(=cos^212+sin^212+cos^21+sin^21=1+1=2\)

\(B=sin^23+sin^287+sin^215+sin^275\)

\(=sin^23+cos^23+sin^215+cos^215=1+1=2\)

a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

=1+1+1+1/2

=3,5

b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)

=1-1-1+1/4

=-1+1/4=-3/4

c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)

=1/2

14 tháng 10 2021

b: \(\cos30^0=\dfrac{\sqrt{3}}{2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(M = \sin {45^o}.\cos {45^o} + \sin {30^o}\)

Ta có: \(\left\{ \begin{array}{l}\sin {45^o} = \cos {45^o} = \frac{{\sqrt 2 }}{2};\;\\\sin {30^o} = \frac{1}{2}\end{array} \right.\)

Thay vào M, ta được: \(M = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} + \frac{1}{2} = \frac{2}{4} + \frac{1}{2} = 1\)

b) \(N = \sin {60^o}.\cos {30^o} + \frac{1}{2}.\sin {45^o}.\cos {45^o}\)

Ta có: \(\sin {60^o} = \frac{{\sqrt 3 }}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\sin {45^o} = \frac{{\sqrt 2 }}{2};\, \cos {45^o}= \frac{{\sqrt 2 }}{2}\)

Thay vào N, ta được: \(N = \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{1}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2} = \frac{3}{4} + \frac{1}{4} = 1\)

c) \(P = 1 + {\tan ^2}{60^o}\)

Ta có: \(\tan {60^o} = \sqrt 3 \)

Thay vào P, ta được: \(Q = 1 + {\left( {\sqrt 3 } \right)^2} = 4.\)

d) \(Q = \frac{1}{{{{\sin }^2}{{120}^o}}} - {\cot ^2}{120^o}.\)

Ta có: \(\sin {120^o} = \frac{{\sqrt 3 }}{2};\;\;\cot {120^o} = \frac{{ - 1}}{{\sqrt 3 }}\)

Thay vào P, ta được: \(Q = \frac{1}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \;{\left( {\frac{{ - 1}}{{\sqrt 3 }}} \right)^2} = \frac{1}{{\frac{3}{4}}} - \;\frac{1}{3} = \;\frac{4}{3} - \;\frac{1}{3} = 1.\)

6 tháng 12 2020

Ta có: 

\(C=sin^22^0+sin^24^0+...+sin^288^0\)

\(C=\left(sin^22^0+sin^288^0\right)+\left(sin^24^0+sin^286^0\right)+...+\left(sin^244^0+sin^246^0\right)\)

\(C=\left(sin^22^0+cos^22^0\right)+\left(sin^24^0+cos^24^0\right)+...+\left(sin^244^0+cos^244^0\right)\)

\(C=1+1+...+1\) \(C=22\)

a: \(A=sin^210^0+sin^280^0+cos^220^0+sin^270^0\)

\(=sin^210^0+cos^210^0+sin^270^0+sin^270^0\)

\(=2\cdot sin^270^0+1\)

b: \(=sin^215^0+sin^275^0+sin^235^0+sin^255^0\)

\(=sin^215^0+cos^215^0+sin^235^0+cos^235^0\)

=1+1

=2