Cho tam giác ABC có AB < AC . Trên tia đối của tia BC lấy điểm M sao cho BM = BA . Trên tia đối cuả tia CB lấy điểm N sao cho CN = CA.
a) Hãy so sánh các góc AMB và ANC.
b) Hãy so sánh các độ dài AM và AN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
anh/chị tự kẻ hình nhé :v
a, t\g BAC vuông cân tại A (gt)
=> AC = CB (đn) và AC _|_ AB (đn) mà AD đối AC
=> AB _|_ AD
xét tam giác ACB và tam giác ADB có : AB chung
AC = AD (gt)
AB _|_ AC và AD => góc CAB = góc DAB = 90
=> tam giác ACB = tam giác ADB (2cgv)
=> BC = DB (đn)
=> tam giác BDC cân tại B (đn)
b, M là trung điểm của BC (gt) => CM = 1/2BC
N là trung điểm của BD (gt) => DN = 1/2DB
mà BC = DB (cmt)
=> CM = DN
xét tam giác CDM và tam giác DCN có : CD chung
góc MCA = góc ADN do tam giác ACB = tam giác ADB (câu a)
=> tam giác CDM và tam giác DCN (c - g - c)
=> CN = DM (đn)
Bạn tự vẽ hình nhé!
Vì BD là p/g của góc ABC => góc ABD = góc DBC = \(\frac{1}{2}\) góc ABC = góc C
=> góc ABD = góc C
Mà góc ABN + ABD = 180o; góc ACP + C = 180o
Nên góc ABN = ACP
Xét tam giác ABN và tam giác PCA có: BN = CA; góc ABN = PCA ; AB = PC
=> tam giác ABN = PCA ( c - g - c)
=> góc BAN = APC
Vậy để AP | AN => góc PAN = 90o => BAN + BAC + CAP = 90o
=> APC + BAC + CAP = 90o
Xét tam giác ACP có: góc ACB = APC + CAP ( t/ c góc ngoài tam giác )
=> góc ACB + BAC = 90o
=> góc ABC = 90o => góc ACB = ABC/ 2 = 45o
Vậy góc ACB = 45o thì AN | AP
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)