K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

\(A=1+3+3^2+3^3+...+3^{3n}+3^{3n+1}+3^{3n+2}\)

\(A=1.\left(1+3+9+\right)+3^3.\left(1+3+9\right)+3^6.\left(1+3+9\right)+...+3^{3n}.\left(1+3+9\right)\)

\(A=1.13+3^3.13+3^6.13+....+3^n.13\)

\(A=13.\left(1+3^3+3^6+...+3^{3n}\right)\)\(13\)

Vậy \(A\)\(13\)\(n\)

14 tháng 10 2021

a) \(\left(3n-1\right)^2-4=\left(3n-1-2\right)\left(3n-1+2\right)\)

\(=\left(3n-3\right)\left(3n+1\right)=3\left(n-1\right)\left(3n+1\right)⋮3\forall n\in N\)

b) \(A=x^2+2x+5=\left(x^2+2x+1\right)+4\)

\(=\left(x+1\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=-1\)

16 tháng 1 2018

Ta có:\(A=n^3+3n^2+5n+3\)=\(n^3-n+3n^2+6n+3\)

=\(n\left(n^2-1\right)+3\left(n^2+2n+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)+3\left(n+1\right)^2\)

Vì \(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)

Mà \(3\left(n+1\right)^2⋮3\) nên \(A=n^3+3n^2+5n+3⋮3\) với mọi n

19 tháng 4 2016

vì 3n^2 và 3 chia hết cho 3 nên xét n^3 + 5n = n(n^2 + 5)

nếu n chia hết cho 3 thì ....

nếu n không chia hết cho 3 thì n^2 chia 3 dư 1 suy ra n^2 + 5 chia hết cho 3

28 tháng 4 2016

ta có n là số nguyên dương => n là số tự nhiên khác 0

A = n3 + 3n2 + 5n +3

   = (n3 - n) + 3(n2 +2n +1)

   = n(n - 1)(n + 1) + 3(n2 + 2n +1)

ta thấy n(n-1)(n+1) là 3 số tự nhiên liên tiếp

mà tích 3 số tự nhiên liên tiếp thì chia hết cho 3 

=> n(n-1)(n+1) chia hết cho 3

mặc khác 3(n2 + 2n +1) luôn chia hết cho 3

=> n(n-1)(n+1) + 3(n+ 2n +1) chia hết cho 3 với mọi n nguyên dương

=> n3 + 3n2 + 5n +3 luôn chia hết cho 3 với mọi n nguyên dương

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

18 tháng 7 2017

Ta có : n(2n - 3) - 2n(n + 1)

= 2n2 - 3n - 2n2 - 2n

= 2n2 - 2n2 - 3n - 2n

= -5n 

Mà n nguyên nên -5n chia hết cho 5

18 tháng 7 2017

a, Ta có 

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n

=-5n chia hết cho 5

=> DPCM

b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)

Lại có  (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)

=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0

=> (2m-3)(3n-2)-(3m-2)(2n-3)=0

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 

=> DPCM