a, Cho \(a^m=a^n\)( a \(\in\)Q; m,n \(\in\)N) Tìm các số m và n
b, Cho \(a^m>a^n\)( a thuộc Q, a> 0; m,n thuộc N) So sánh m và n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) am = an
=> am - an = 0
=> an.(am-n - 1) = 0
=> an = 0 hoặc am-n - 1 = 0
=> a = 0 hoặc am-n = 1
=> a = 0 hoặc m - n = 0
=> m = n
b) am > an
=> am - an > 0
=> an.(am-n - 1) > 0
=> an và am-n - 1 cùng dấu
Mà a > 0 => an > 0 => am-n - 1 > 0
=> am-n > 1
=> m - n > 0
=> m > n
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
Ta có:
\(\frac{a}{b}< 1\\ \Rightarrow a< b\\ \Rightarrow am< bm\left(m\in N^{\cdot}\right)\\ \Rightarrow am+ab< bm+ab\\\Rightarrow a\left(b+m\right)< b\left(a+m\right)\\ \Rightarrow\frac{a}{b} < \frac{a+m}{b+m}\)
~.~
M lớn hơn hay nhỏ hơn N vậy bạn ơi??
Nếu m > n thì A > B; m < n thì A < B nhé!!
(am)n = am.am.........am (n thừa số am)
= am+m+m+.....+m (n số hạng m)
= am.n (đpcm)
(a^m)^n = (a.a.a..a)^n ( m số a )
= a^n . a^n . a^n ....a^n ( m số a^n)
= a^n+n+n+...+n ( m số n )
=a^m.n ( ĐPCM)
Để phân số \(A=\dfrac{5n+7}{2n+1}\in Z\) thì :
\(5n+7⋮2n+1\)
Mà \(2n+1⋮2n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}10n+14⋮2n+1\\10n+5⋮2n+1\end{matrix}\right.\)
\(\Leftrightarrow9⋮2n+1\)
Vì \(n\in Z\Leftrightarrow2n+1\in Z;2n+1\inƯ\left(9\right)\)
Xét ước là ok!
Để phân số \(A=\dfrac{5n+7}{2n+1}\in Z\) thì : \(5n+7⋮2n+1\)
Mà \(2n+1⋮2n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}10n+14⋮2n+1\\10n+5⋮2n+1\end{matrix}\right.\Leftrightarrow9⋮2n+1\)
Vì \(n\in Z\Leftrightarrow2n+1\in Z;2n+1\inƯ\left(9\right)\)
Xét ước của 9
Vậy .............