K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Ngân 2K7: Đề sai ở câu b) phải là chứng minh :\(A=2^{2008}-1\)

\(A=1+2^1+2^2+2^3+...+2^{2007}\)

a) \(\Rightarrow2A=2+2^2+2^3+...+2^{2008}\)

b) Từ kết quả câu a),ta có: \(2A-A=A=2^{2008}-1^{\left(đpcm\right)}\)

30 tháng 9 2018

Làm một lèo xong luôn :v

\(A=1+2+2^2+...+2^{2007}\)

\(2A=2+2^2+2^3+...+2^{2008}\)

\(2A-A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+...+2^{2007}\right)\)

\(A=2^{2008}-1\)

Câu b) viết sai đề

9 tháng 4 2019

24 tháng 8 2019

A = 1 + 2 + 2 2 + . . . + 2 2007

2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008

A = 2A - A =  ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) =  2 2008 - 1

Vậy  A = 2 2008 - 1

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

3 tháng 2 2023

 

b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử  \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(B\text{=}2.63+...+2^{56}.63\)

\(\Rightarrow B⋮63\)

\(\Rightarrow B⋮21\)

 

29 tháng 8 2023

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 8 2023

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)

6 tháng 10 2023

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)

27 tháng 2 2015

phân số nên mik k viết đc

4 tháng 8 2018

Ta có : A = 1 + 2 + 2+ 23 + ...... + 22007

=> 2A = 2 + 2+ 23 + ...... + 22008

b) Suy ra : 2A - A = 22008 - 1

=> A = 22008 - 1

Vậy đpcm

4 tháng 8 2018

a) ta có: A = 1 + 2^1 + 2^2 + 2^3 + ...+ 2^2007

=> 2A = 2 + 2^2+2^3+2^4+...+2^2008

b) ta có: 2A = 2 + 2^2 + 2^3 + 2^4+...+2^2008

=> 2A-A = 2^2008 - 1

A = 2^2008 - 1

4 tháng 1 2020

a,  A = 1 + 5 3 + 5 5 + 5 7 + . . . + 5 99

B = 5 4 + 5 6 + 5 8 + . . . + 5 100 =  5 . ( 5 3 + 5 5 + 5 7 + . . . + 5 99 ) = 5(A – 1)

A + B – 1 =  5 3 + 5 4 + . . . + 5 100

5(A + B – 1) =  5 4 + 5 5 + . . . + 5 100 + 5 101

4(A + B – 1) = 5(A + B – 1) – (A + B – 1) =  5 101 - 5 3

=> A + B – 1 =  5 101 - 5 3 4

=> A + 5(A – 1) –1 =  5 101 - 5 3 4 => 6A – 6 =  5 101 - 5 3 4

=> A – 1 =  5 101 - 5 3 24

=> A =  5 101 - 5 3 + 24 24

b,  A = 1 - 2 + 2 2 - . . . - 2 2007

A = 1 + 2 2 + . . . + 2 2006 - 2 + 2 3 + . . . + 2 2007

A = ( 1 + 2 2 + . . . + 2 2006 ) - 2 . 1 + 2 2 + . . . + 2 2006

A = - 1 + 2 2 + . . . + 2 2006

Đặt  B = - 2 + 2 3 + . . . + 2 2007 =  - 2 . 1 + 2 2 + . . . + 2 2006 = 2A

A + B =  - 1 + 2 + 2 2 + . . . + 2 2006 + 2 2007

2(A+B) =  - 2 + 2 2 + . . . + 2 2006 + 2 2007 + 2 2008

A+B = 2(A+B)–(A+B) =  - 2 2008 - 1

=> A+2A =  - 2 2008 - 1

=> 3A =  - 2 2008 - 1

=> A =  - ( 2 2008 - 1 ) 3

c,  A = 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999

Đặt B =  7 2 + 7 4 + 7 6 + . . . + 7 1999 + 7 2000 =  7 ( 7 + 7 3 + 7 5 + 7 7 + . . . + 7 1999 ) = 7A

A+B =  7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000

7(A+B) =  7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001

7(A+B) – (A+B) =  ( 7 2 + 7 3 + . . . + 7 1999 + 7 2000 + 7 2001 )  –  ( 7 + 7 2 + 7 3 + . . . + 7 1999 + 7 2000 )

6(A+B) =  7 2001 - 7

A+B =  7 2001 - 7 6

=> A + 7A =  7 2001 - 7 6 => 8A =  7 2001 - 7 6 => A =  7 2001 - 7 48