Cho các chữ số : 1,2,3,4,5,6 có thể viết dược bao nhiêu số có 4 chữ số khác nhau từ 5 số trên ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcd}\)
(c,d) có thể là (1;2); (1;6); (2;4); (3;2); (3;6); (5;6)
Với mỗi bộ sẽ có \(1\cdot A^2_4=12\left(số\right)\)
=>Có 12*6=72 số
023;1024;1025;1032;1034;1035;1042;1043;1045;1052;1053;1054;1203;1204;1205;1230;1234;1235;1240;1241;1243;1245;1250;1253;1254; 1302;1304;1305;1320;1324;1325;1352;1345;1352;1354;1402;1403;1405;1420;1423;1425;1430;1432;1435;1450;1452;1453;1502;1503;1504;15201;1523;1524;1530;1532;1534;1540;1542;1543;2013;2014;2015;2130;2134;2135;2340;2342;2345;... Theo mình tính thì trong hàng số 1.000 thì có 60 số vậy hàng 2;3;4;5 cũng có 60 số; vậy, ta có: 1;2;3;4;5 là 5 số, ta lấy: 60x5= 300 số. Ta biết rằng số chẵn bằng phân nữa số lẻ: nên, ta lấy: 300:2= 150 số chẵn</p><p>Vậy: có 150 số chẵn. Số chẵn lớn nhất có 4 chữ số là: 5432Số lẻ bé nhất có 4 chữ số là: 1023
Bạn nhớ cho mình 1 like nhé !
gọi số cần tìm là ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯
đầu tiên ta xếp 3 chữ số 3 vào 3 trong 5 vị trí: có C35C53 cách.
sau đó xếp 2 chữ số khác nhau trong 4 chữ số còn lại xếp vào 2 vị trí còn lại: có A24A42 cách.
vậy số các số cần tìm là: C35A24=120C53A42=120 số
đáp số:120 số
Dựa vào dấu hiệu chia hết cho 4 là 2 chữ số tận cùng chia hết cho 4. Gọi số đó có dạng abcd, trong đó (cd)thuộc {(12),(16),(24),(32),(36),(52),(56),(64)}, số cách chon a trong mỗi TH là 4, số cách chon b là 3. Từ đó suy ra ứng với mỗi bộ có 12 số, Vậy có 12.8=96 số
Dựa vào dấu hiệu chia hết cho 4 là 2 chữ số tận cùng chia hết cho 4.
Gọi số đó có dạng abcd, trong đó (cd)thuộc {(12),(16),(24),(32),(36),(52),(56),(64)}, số cách chon a trong mỗi TH là 4, số cách chon b là 3.
Từ đó suy ra ứng với mỗi bộ có 12 số,
Vậy có 12.8=96 số
a: 97532
b: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
c: \(\overline{abcd}\)
TH1: d=0
=>Có 5*4*3=60 số
TH2: d=5
=>Có 4*4*3=48 số
=>Có 60+48=108 số
a: Gọi số cần tìm là \(\overline{abcde}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
e có 1 cách chọn
=>Có \(4\cdot4\cdot3\cdot2\cdot1=16\cdot6=96\left(số\right)\)
b: Gọi số cần tìm là \(\overline{abcd}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
Do đó: Có \(4\cdot4\cdot3\cdot2=96\left(số\right)\)
c: Gọi số cần tìm có dạng là \(\overline{abc}\)
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
=>Có 4*4*3=48 số
d: Gọi số cần tìm có dạng là \(\overline{abc}\)
a có 4 cách
b có 5 cách
c có 5 cách
Do đó: Có \(4\cdot5\cdot5=100\left(số\right)\)
a) Để lập được số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên (0, 1, 2, 3, 4), 5 cách chọn chữ số thứ hai, 5 cách chọn chữ số thứ ba, 5 cách chọn chữ số thứ tư và 5 cách chọn chữ số thứ năm. Vậy tổng số số tự nhiên có 5 chữ số gồm cả 5 chữ số 0, 1, 2, 3, 4 là 5 x 5 x 5 x 5 x 5 = 3125.
b) Để lập được số tự nhiên có 4 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước), và 2 cách chọn chữ số thứ tư (loại bỏ 3 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 4 chữ số khác nhau là 5 x 4 x 3 x 2 = 120.
c) Để lập được số tự nhiên có 3 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta có 5 cách chọn chữ số đầu tiên, 4 cách chọn chữ số thứ hai (loại bỏ chữ số đã chọn ở bước trước), và 3 cách chọn chữ số thứ ba (loại bỏ 2 chữ số đã chọn ở bước trước). Vậy tổng số số tự nhiên có 3 chữ số khác nhau là 5 x 4 x 3 = 60.
d) Để lập được số tự nhiên có 3 chữ số từ các chữ số 0, 1, 2, 3, 4 (có thể có chữ số giống nhau), ta có 5 cách chọn chữ số đầu tiên, 5 cách chọn chữ số thứ hai, và 5 cách chọn chữ số thứ ba. Vậy tổng số số tự nhiên có 3 chữ số (có thể có chữ số giống nhau) là 5 x 5 x 5 = 125....
Sai đề rùi
Có 6 chữ số đó mà lại nói 5 thì người ta hiểu nhầm luôn