K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

\(\left(x-a\right)^n=\left(a-1\right)^2\)

Nếu n lẻ thì \(x-a=\sqrt[n]{\left(a-1\right)^2}\) do đó \(x=a+\sqrt[n]{\left(a-1\right)^2}\)

Nếu n chẵn , \(n=2k\left(k\inℕ^∗\right)\) thì \(x-a=\pm\sqrt[2k]{\left(a-1\right)^2}\) vì \(\left(a-1\right)^1\ge0\) có 2 căn bậc hai đối nhau

Do đó: \(x=a\pm\sqrt[k]{|a-1|}\) 

Nếu \(a\ge1\) thì \(x=a\pm\sqrt[k]{a-1}\)

Nếu a < 1 thì \(x=a\pm\sqrt[k]{1-a}\)

=.= hok tốt!!

NV
23 tháng 1 2021

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

1 tháng 2 2021

• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)

• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1}  \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)

• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)

Vậy....

27 tháng 2 2016

\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\)  (1)

Xét các bất phương trình thành phần

\(\left(x^2-1\right)\left(x-2\right)\ge0\)  (a)

\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\)  (b)

Ta có T(1)=T(a)\(\cap\) T(b)

Lập bảng xét dấy 

\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)

x-\(\infty\)       -1           1           2                  +\(\infty\)
f(x)        -    0    +     0       -    0      +

Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)

Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1

- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)

Xét các trường hợp sau :

         + Trường hợp 1 :

 \(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\)   \(\Leftrightarrow\)   \(-1\le a\le0\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)

          + Trường hợp 2 

 \(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\)   \(\Leftrightarrow\)   \(-1\le a\le0\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)

 

    + Trường hợp 3 

 \(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\)   \(\Leftrightarrow\)   \(\frac{1}{2}\le a\le1\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)

   + Trường hợp 4

   1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)

   + Trường hợp 5 :

   a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)

- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)

Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm

Từ đó ta kết luận :

+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)

+  Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)

+ Khi 0<a<\(\frac{1}{2}\)  hệ có tập nghiệm T(1) = \(\left[a;1\right]\)

+ Khi \(\frac{1}{2}\)\(\le\)\(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)

+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)

 

 

 

 

 

21 tháng 12 2021

\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)

Với \(m\ne2;m\ne3\)

\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)

Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)

Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)

Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm