K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

\(n^4-1\)

\(=\left(n^2\right)^2-1^2\)

\(=\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n lẻ \(\Rightarrow\hept{\begin{cases}n-1\text{chẵn}\\n+1\text{chẵn}\\n^2+1\text{chẵn}\Rightarrow n^2+1⋮2\left(1\right)\end{cases}}\)

mặt khác n - 1 và n + 1 là 2 số chẵn liên tiếp \(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮8\left(đpcm\right)\)

30 tháng 9 2018

Phân tích thành nhân tử:

\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n là số tự nhiên lẻ nên n = 2k + 1 với k là số tự nhiên

Khi đó:

 \(n^4-1=\left(2k-1+1\right)\left(2k+1+1\right)\left(n^2+1\right)\)

\(=2k\left(2k+2\right)\left(n^2+1\right)\)

\(=2k.2.\left(k+1\right)\left(n^2+1\right)\)

\(=4k\left(k+1\right)\left(n^2+1\right)\)

Vì k(k+1) là tích hay số tự nhiên liên tiếp nên k(k+1) chia hết cho 2  \(\Rightarrow4k\left(k+1\right)⋮8\)

                                                                                                            \(\Rightarrow4k\left(k+1\right)\left(n^2+1\right)⋮8\)

                                                                                                     hay  \(n^4-1⋮8\)(với n là số tự nhiên lẻ)

Ta có điều phải chứng minh.

\(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=\left(2k-1-1\right)\left(2k-1+1\right)\left(4k^2-4k+1+1\right)\)

\(=2k\left(2k-2\right)\left(4k^2-4k+2\right)\)

\(=8k\left(k-1\right)\left(2k^2-2k+1\right)⋮8\)

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Bài 8:

a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)

\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)

b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)

\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)

c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)

d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12\cdot2n=24n⋮24\)(đpcm)

Bài 3:

a) Ta có: \(\left(3n-1\right)^2-4\)

\(=\left(3n-1-2\right)\left(3n-1+2\right)\)

\(=\left(3n-3\right)\left(3n+1\right)\)

\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)

b) Ta có: \(100-\left(7n+3\right)^2\)

\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)

\(=\left(10-7n-3\right)\left(10+7n+3\right)\)

\(=\left(7-7n\right)\left(13+7n\right)\)

\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)

c) Ta có: \(\left(3n+1\right)^2-25\)

\(=\left(3n+1-5\right)\left(3n+1+5\right)\)

\(=\left(3n-4\right)\left(3n+6\right)\)

\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)

d) Ta có: \(\left(4n+1\right)^2-9\)

\(=\left(4n+1-3\right)\left(4n+1+3\right)\)

\(=\left(4n-2\right)\left(4n+4\right)\)

\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)

\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)

a) 4n-5 chia hết cho 13
4n-5
=4n+35n-35n-5
=39n-5(7n-1) chia hết cho 39
vì 39 chia hết cho 13
=> 39n-5(7n-1) chia hết cho 13
=> 4n-5 chia hết cho 13

Tìm n thuộc N biết 4n - 5 chia hết cho 13,5n + 1 chia hết cho 7,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

Tìm n thuộc N biết 4n - 5 chia hết cho 13,5n + 1 chia hết cho 7,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

Tìm n thuộc N biết 4n - 5 chia hết cho 13,5n + 1 chia hết cho 7,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

6 tháng 11 2019

nhanh vs ạ giúp mk vs

24 tháng 12 2018

\(3n-4⋮n-1\)

\(3n-3-1⋮n-1\)

\(3\left(n-1\right)-1⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)

\(\Rightarrow1⋮n-1\)

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{2;0\right\}\)

24 tháng 12 2018

thank ạ

AH
Akai Haruma
Giáo viên
10 tháng 6 2024

Lời giải:

Đặt $n=2k$ với $k$ là số tự nhiên. Khi đó:

$10^n-1=10^{2k}-1=1\underbrace{000...0}_{2k}-1$

$=\underbrace{999...9}_{2k}$

$=99\times 10^{2k-2}+99\times 10^{2k-4}+....+99.10^2+99$

$=99\times (10^{2k-2}+10^{2k-4}+...+10^2+1)\vdots 99$

Ta có đpcm.