Phân tích đa thức thành nhân tử: \(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
Help me vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3(c - b2) + b3(a - c2) + c3(b - a2) + abc(abc - 1)
= a3c - a3b2 + ab3 - b3c2 + bc3 - a2c3 + a2b2c2 - abc
= a2b2c2 - b3c2 - (a2c3 - bc3) - (a3b2 - ab3) + (a3c - abc)
= b2c2(a2 - b) - c3(a2 - b) - ab2(a2 - b) + ac(a2 - b)
= (a2 - b)(b2c2 - c3 - ab2 + ac) = (a2 - b)[c2(b2 - c) - a(b2 - c)] = (a2 - b)(b2 - c)(c2 - a)
a^3(c−b^2)+b^3(a−c^2)+c^3(b−a^2)+abc(abc−1)
=a^3c−a^3b^2+b^3(a−c^2)+bc^3−a^2c^3+a^2b^2c^2−abc
=(a^3c−a^2c^3)+b^3(a−c^2)−(a^3b^2−a^2b^2c^2)+(bc^3−abc)
=a^2c(a−c^2)+b^3(a−c^2)−a^2b^2(a−c^2)−bc(a−c^2)
=(a^2c+b^3−a^2b^2−bc)(a−c2)
=[c(a^2−b)−b^2(a^2−b)](a−c^2)=(a^2-b)(c-b^2)(a-c^2)
1) \(\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
a3(c - b2) + b(a - c2) + c3(b - a2) + abc(abc - 1)
= a3c - a3b2 + ab3 - b3c2 + c3b - a2c3 + a2b2c2 - abc
= (a2b2c2 - b3c2) + (a3c - abc) - (a3b2 - ab3) - (a2c3 - c3b)
= b2c2(a2 - b) + ac(a2 - b) - ab2(a2 - b) - c3(a2 - b)
= (a2 - b)(b2c2 + ac - ab2 - c3)
= (a2 - b)[(b2c2 - c3) - (ab2 - ac)]
= (a2 - b)[c2(b2 - c) - a(b2 - c)]
= (a2 - b)(c2 - a)(b2 - c)