chứng minh rằng:\(9^{9^{9^9}}-9^{9^9}⋮10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 10-1/10! + 11-2/11! +.........+ 1000-991/1000!
=10/10! - 1/10! + 11/11! - 1/11! +....+ 1000/1000!-1/1000!
=1/9! - 1/10! + 1/10! - 1/11! +....+ 1/999! - 1/1000!
=1/9! - .1/1000!
Ta thấy : 1/9! - 1/1000! < 1/9!
Cho mình hỏi bạn có phải là NGUYỄN THÚY HUYỀN _ LỚP 6B _ TRƯỜNG TRUNG HỌC CƠ SỞ VĨNH YÊN _ VĨNH PHÚC không ?
Ta có:
\(\dfrac{9}{n!}\)< \(\dfrac{n-1}{n!}\) = \(\dfrac{1}{(n-1)!} - \dfrac{1}{n!}\) với n > 10 (n thuộc Z)
\(\Rightarrow\) \(\dfrac{9}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!} \)
= \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!}\)
\(\Rightarrow\) \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{1}{10!} - \dfrac{1}{11!} + \dfrac{1}{11!} - \dfrac{1}{12!} + ....\)
= \(\dfrac{1}{9!} - \dfrac{1}{1000!}\)
\(\Rightarrow \) \(\dfrac{9}{10!} + \dfrac{9}{11!} + ...+ \dfrac{9}{1000!} < \dfrac{1}{9!}\)
Chúc bn hc tốt.
1+9+9^2+9^3+9^4+9^5+9^6+9^7+9^8+9^9
=(1+9)+9^2(1+9)+....+9^8(1+9)
=10+9^2.10+.....+9^8.10
=10.(1+9^2+.....+9^8) =>tổng này chia hết cho 10
1+9 +9^2+ 9^3+ 9^4+ 9^5+ 9^6+ 9^7+ 9^8+ 9^9=(1+9)+(9^2+9^3)+(9^4+9^5)+(9^6+9^7)+(9^8+9^9)
=10+9(1+9)+9^2(1+9)+9^4(1+9)+9^6(1+9)+9^8(1+9)
=10+9*10+9^2*10+9^4*10+9^6*10+9^8*10
=10(1+9+9^2+9^4+9^6+9^8) chia het cho 10
suy ra 1+9+9^2+9^3+9^4+9^5+9^6+9^7+9^8+9^9 chia het cho 10