Cho a = 1.2.3...29
b = 30.31.32...58
Chứng minh \(a+b⋮59\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1.2.3 + 2.3.4+3.4.5+...+30.31.32
=> 4D = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 30.31.32.4
=> 4D = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 30.31.32.(33 - 29)
=> 4D = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 30.31.32.33 - 29.30.31.32
=> 4D = 30.31.32.33
=> D = \(\frac{30\cdot31\cdot32\cdot33}{4}=245520\)
Câu 3:
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Mà: \(2A+3=3^N\)
\(\Rightarrow3^{101}-3+3=3^N\)
\(\Rightarrow3^{101}=3^N\)
\(\Rightarrow N=101\)
Vậy: ...
Câu 1:
\(A=4+2^2+...+2^{20}\)
Đặt \(B=2^2+2^3+...+2^{20}\)
=>\(2B=2^3+2^4+...+2^{21}\)
=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)
=>\(B=2^{21}-4\)
=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2
Câu 6:
Đặt A=1+2+3+...+n
Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)
=>\(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(A⋮n+1\)
Câu 5:
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
Câu 1:
Đặt S = 1.2+2.3+3.4+...+30.31
3 S = 1.2.3+2.3.3+3.4.3+...+30.31.3
3 S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ...+ 30.31.(32-29)
3S = 1.2.3 + 2.3.4-2.3 + 3.4.5-2.3.4 + ...+ 30.31.32-29.30.31
3S= 30.31.32
S= 30.31.32/3