\(\frac{7}{n+9},\frac{8}{n+10},...,\frac{31}{n+33}\). Tìm số tự nhiên n nhỏ nhất để các phân số đó tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phân số đã cho đều có dạng \(\frac{a}{a+\left(n+2\right)}\)
Vì các phân số này tối giản nên n + 2 và a là số nguyên tố cùng nhau
Như vậy n + 2 phải nguyên tố cùng nhau với các số 7;8;9;....;31 và n + 2 là số nhỏ nhất
Vậy n + 2 phải là số nguyên tố nhỏ nhất lớn hơn 31 tức là n + 2 = 37, do đó số n cần phải tìm là 35
các phân số trên đưa về dạng : k/(n + k + 2) đặt là phân số (1)
với k= 7, 8, ..., 31
Muốn (1) tối giản <=> tử k và mẫu (n+k+2) không có ước chung > 1 khi k chạy từ 7, 8, ... , 31
Muốn vậy thì: n = 21