K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

tim gi ban

tim a va b ak

21 tháng 9 2018

đúng rồi

14 tháng 7 2017

\(\dfrac{1}{3y^2-10y}=\dfrac{6y}{9y^2-1}+\dfrac{2}{1-3y}\)

\(\Leftrightarrow\dfrac{1}{3y^2-10y}=\dfrac{6y-2\left(3y+1\right)}{\left(3y-1\right)\left(3y+1\right)}\)

\(\Leftrightarrow\dfrac{1}{3y^2-10y}=\dfrac{-2}{9y^2-1}\)

\(\Leftrightarrow9y^2-1=-6y^2+20y\)

\(\Leftrightarrow15y^2-20y-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{10+\sqrt{115}}{15}\\y=\dfrac{10-\sqrt{115}}{15}\end{matrix}\right.\)

NV
30 tháng 5 2019

ĐKXĐ:...

Biến đổi pt dưới:

\(4x^2-16x+16=9xy-9y^2+9y-9x\)

\(\Leftrightarrow4\left(x-2\right)^2=9\left(x-y\right)\left(y-1\right)\)

\(\Leftrightarrow2\left(x-2\right)=3\sqrt{\left(x-y\right)\left(y-1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\) \(\Rightarrow x=a^2+b^2+1\)

Ta được hệ:

\(\left\{{}\begin{matrix}\left(a^2+b^2+1\right)\left(a+b\right)=2\\2\left(a^2+b^2-1\right)=3ab\end{matrix}\right.\)

Đây là hệ đối xứng loại 1, hy vọng bạn tự giải, hơi làm biếng :(

NV
30 tháng 5 2019

Dạ có đó chị hai, em hơi bất cẩn :D

28 tháng 3 2018

a)    \(2x^3-4x^2+2x=0\)

\(\Leftrightarrow\)\(2x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\)\(2x\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy....

28 tháng 3 2018

a)

\(2x^3-4x^2+2x=0\)

\(\Leftrightarrow2x\times\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2x\times\left(x-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{0;1\right\}\)

21 tháng 1 2018

mình chịu lun

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-3y=-1\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in R\)

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

30 tháng 1 2019

ko ai làm thì tớ chữa nha

30 tháng 1 2019

chữa đê bạn

Mà hình như thường thì hệ phương trình 3 ẩn sẽ có 3 phương trình chớ nhể