giải theo phương pháp khử
5x+6y=42(1)
7x+9y=63(2)
giải 2 cách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3y^2-10y}=\dfrac{6y}{9y^2-1}+\dfrac{2}{1-3y}\)
\(\Leftrightarrow\dfrac{1}{3y^2-10y}=\dfrac{6y-2\left(3y+1\right)}{\left(3y-1\right)\left(3y+1\right)}\)
\(\Leftrightarrow\dfrac{1}{3y^2-10y}=\dfrac{-2}{9y^2-1}\)
\(\Leftrightarrow9y^2-1=-6y^2+20y\)
\(\Leftrightarrow15y^2-20y-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{10+\sqrt{115}}{15}\\y=\dfrac{10-\sqrt{115}}{15}\end{matrix}\right.\)
ĐKXĐ:...
Biến đổi pt dưới:
\(4x^2-16x+16=9xy-9y^2+9y-9x\)
\(\Leftrightarrow4\left(x-2\right)^2=9\left(x-y\right)\left(y-1\right)\)
\(\Leftrightarrow2\left(x-2\right)=3\sqrt{\left(x-y\right)\left(y-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-y}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\) \(\Rightarrow x=a^2+b^2+1\)
Ta được hệ:
\(\left\{{}\begin{matrix}\left(a^2+b^2+1\right)\left(a+b\right)=2\\2\left(a^2+b^2-1\right)=3ab\end{matrix}\right.\)
Đây là hệ đối xứng loại 1, hy vọng bạn tự giải, hơi làm biếng :(
a) \(2x^3-4x^2+2x=0\)
\(\Leftrightarrow\)\(2x\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\)\(2x\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy....
a)
\(2x^3-4x^2+2x=0\)
\(\Leftrightarrow2x\times\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow2x\times\left(x-1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{0;1\right\}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-3y=-1\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in R\)
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
chữa đê bạn
Mà hình như thường thì hệ phương trình 3 ẩn sẽ có 3 phương trình chớ nhể
tim gi ban
tim a va b ak
đúng rồi