Giải pt: \(\sqrt{5x^3+3x^2+3x-2}+\frac{1}{2}=\frac{x^2}{2}+3x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
\(\Leftrightarrow5x^3+3x^2+3x-2=\left(\dfrac{x^2}{2}+3x-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow5x^3+3x^2+3x-2=\dfrac{x^4}{4}+x^2\left(3x-\dfrac{1}{2}\right)+\left(3x-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow5x^3+3x^2+3x-2=\dfrac{x^4}{4}+3x^3-\dfrac{x^2}{2}+9x^2-3x+\dfrac{1}{4}\)
\(\Leftrightarrow20x^3+12x^2+12x-8=x^4+12x^3-2x^2+36x^2-12x+1\)
\(\Leftrightarrow x^4-8x^3+22x^2-24x+9=0\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(7x^3-7x^2\right)+\left(15x^2-15x\right)-\left(9x-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+15x-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-x^2\right)-\left(6x^2-6x\right)+\left(9x-9\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\left\{1;3\right\}\)
ĐK: \(x\ge\frac{2}{5}\)
Ta có \(\sqrt{5x^3+3x^2+3x-2}+\frac{1}{2}=\frac{x^2}{2}+3x\)
<=> \(\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=\frac{x^2}{2}+3x-\frac{1}{2}\)
<=> \(2\sqrt{\left(5x-2\right)\left(x^2+x+1\right)}=x^2+6x-1\)
Đặt \(\sqrt{5x-2}=a\left(a\ge0\right),\sqrt{x^2+x+1}=b\left(b\ge0\right)\)
=> \(a^2+b^2=5x-2+x^2+x+1=x^2+6x+1\)
Ta có \(2ab=a^2+b^2\)
<=> \(\left(a-b\right)^2=0\) <=> a=b
Theo cách đặt ta có \(\sqrt{5x-2}=\sqrt{x^2+x+1}\)
=> \(5x-2=x^2+x+1\)
<=> \(\left(x-3\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x=3\left(TMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\)
Vậy
Xin lỗi mk nhầm phải là
\(a^2+b^2=x^2+6x-1\)
Sorry