K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2015

\(\text{Áp dụng BĐT bunhiacopxki ta có:}\)

\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le\left(\sin^2\alpha+\cos^2\alpha\right)\left(1+1\right)\)

\(\Leftrightarrow A^2\le1.1\Rightarrow A\le1\)

\(\text{Dấu "=" xảy ra khi: }\sin\alpha=\cos\alpha\)

Vậy................

26 tháng 7 2017

Kết quả:

A=1    B=2   C=-4

3 tháng 10 2018

\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)

\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)

25 tháng 7 2017

lấy 1 ở đâu để trừ đi \(sin^2\alpha\) ạ????

30 tháng 3 2017

undefined

30 tháng 3 2017

Làm hay thế :))

19 tháng 7 2015

( sin a + cos a )^2 = (7/5)^2 

=> sin^2 a + cos^2a + 2.sina . cos a =  49/25 

=> 1 + 2.sin a . cos a  = 49/25 

=> 2.sin a + cos a = 49/25 - 1 = 24 / 25 

 ( sin a - cos a )^2 = sin ^2 a + cos ^2a  - 2. sin  a . cos a = 1 - 24/25 = 1/25 

=> sin a - cos a = 1/5 (2)

TA có sina + cos a = 7/5 (1)

Từ (1) và (1) => 2 sina = 8/5 => sin a = 8/5 : 2 = 8/10 = 4/5 

=> cos a = sin a - 1/5 = 4/5 - 1/5 = 3/5 

 

tan a = \(\frac{sina}{cosa}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{5}\cdot\frac{5}{3}=\frac{4}{3}\)

19 tháng 7 2015

a=A          

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alphaA=tanα+tanα1tanα+3tanα1=tan2α+1tan2α+3=cos2α1cos2α1+2=1+2cos2α Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}A=1+2169=817.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}B=cos3αsin3α+cos3α3cos3α+cos3α2sinαcos3αsinαcos3αcosα=tan3α+3+2tanα(tan2α+1)tanα(tan2α+1)(tan2α+1).

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}B=22+3+22(2+1)2(2+1)(2+1)=3+823(21).