Tìm GTLN, GTNN của biểu thức \(y=\frac{x}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biểu thức B nhận giá trị b khi phương trình sau có nghiệm \(b=\frac{x+2y+1}{x^2+y^2+7}\)
\(\Leftrightarrow bx^2-x+by^2-2y+7y-1=0\left(2\right)\)
trong đó x là ẩn, y là tham số và b là tham số có điều kiện
nếu b=0 => x+2y+1=0
nếu b \(\ne\)0 để (2) có nghiệm x khi 1-4b(by2-2y+7b-1) >= 0 (3)
coi (3) là bất phương trình ẩn y. bất phương trình này xảy ra với mọi giá trị của y khi 16b2+4b2(-28b2+4b+1) >=0
<=> -28b2+4b+5 >=0 \(\Leftrightarrow-\frac{5}{14}\le b\le\frac{1}{2}\)
vậy minB=-5/14 khi \(x=-\frac{7}{5};y=-\frac{14}{5}\)
maxB=1/2 khi x=1;y=2
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10
TXĐ:R
Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)
<=> \(Ax^2-Ax+A-x^2-1=0\)
<=> \(\left(A-1\right)x^2-Ax+A-1=0\)
TH1: A =1 => x =0
TH2: A khác 1
phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)
<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)
A min =2/3 thay vào => x
A max =2 thay vào tìm x .
Ta có:
+) \(y-\dfrac{1}{2} = \dfrac{x}{x^2+1}-\dfrac{1}{2}=\dfrac{2x-x^2-1}{x^2+1}=\dfrac{-(x-1)^2}{x^2+1}\leq 0 \Rightarrow y\le \dfrac{1}{2} \), dấu "=" xảy ra khi và chỉ khi x = 1
+)\(y+\dfrac{1}{2} = \dfrac{x}{x^2+1}+\dfrac{1}{2}=\dfrac{2x+x^2+1}{x^2+1}=\dfrac{(x+1)^2}{x^2+1}\geq 0 \Rightarrow y \ge -\dfrac{1}{2}\), dấu "=" xảy ra khi và chỉ khi x = -1
Vậy GTLN của y là 1/2; GTNN của y là -1/2