Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC. Biết MA=MB=MC=AC thì số đo goác B là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BM=CM=\frac{1}{2}BC\)
Mà BM=CM=AM
\(\Rightarrow AM=\frac{1}{2}BC\)(1)
Trong tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền nên ta có:
M là trung điểm của BC nên AM là đường trung tuyến (2)
Từ (1) và (2) ta có ;
\(\Delta ABC\)vuông tại A
∆ABC có M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm N sao cho MN = MA.
Ta có:
ےAMB = ےNMC (đối đỉnh)
BM = CM (giả thiết)
MA = MN (dựng hình)
Suy ra: ∆MAB = ∆MNC (c.g.c)
Suy ra: NC = AB và ےMBA = ےMCN
Do ےMBA = ےMCN nên AB // NC
Suy ra ےBAC + ےACN = 180
Ta có: ےBAC = 90 nên ےACN = 90
=> ∆ABC = ∆CNA (c.g.c) vì AC là cạnh chung
AB = NC (cmt) và ےBAC = ےACN = 90
=> AN = BC
=> AM = ½ BC
\(MA=MB\Rightarrow\Delta MAB\)cân tại \(M\)
suy ra \(\widehat{MAB}=\widehat{MBA}\).
Tương tự ta cũng suy ra \(\widehat{MCA}=\widehat{MAC}\)
\(\widehat{ABC}=\widehat{MAC}+\widehat{MAB}=\widehat{MCA}+\widehat{MBA}\)
\(\Rightarrow\widehat{ABC}=\frac{180^o}{2}=90^o\).
Do đó ta có đpcm.
Ta có M là trung điểm BC và MB = MC = MA (đề bài)
=> AM là đường trung tuyến ứng với cạnh huyền BC và = 1/2 BC
Mà cái này chỉ có trong tam giác vuông
=> tam giác ABC vuông tại A
bằng 30 độ nha bạn,bởi vì ta có cạnh góc vuông bằng một nửa cạnh huyền nên góc đối của chúng =30 độ