M=\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)với x>0,\(x\ne1\)
Rut gon bieu thuc M
Tìm x để M=\(\dfrac{9}{2}\)
So sanh M va 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)\cdot\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)
b: Để P=4/3 thì 4 căn x=3 căn x+6
=>x=36
a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)
\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
b: A=2B
=>\(10=4\sqrt{x}-2\)
=>\(4\sqrt{x}=12\)
=>x=9(nhận)
a)ĐKXĐ:x>0
P=\(\left(\frac{3}{x-1}-\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\left(vớix>0\right)\)
=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]:\frac{1}{\sqrt{x}+1}\)
=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\frac{1}{\sqrt{x}+1}\)
= \(\left[\frac{3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\frac{1}{\sqrt{x}+1}\)
=\(\frac{4-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{1}\)
=\(\frac{4-\sqrt{x}}{\sqrt{x}-1}\)
b)Để P=\(\frac{5}{4}\left(vớix>0\right)\)
\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}=\frac{5}{4}\)
\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}-\frac{5}{4}=0\)
\(\Leftrightarrow\frac{4\left(4-\sqrt{x}\right)}{4\left(\sqrt{x}-1\right)}-\frac{5\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-1\right)}=0\)
\(\Rightarrow16-4\sqrt{x}-5\sqrt{x}+5=0\)
\(\Leftrightarrow21-9\sqrt{x}=0\)
\(\Leftrightarrow-9\sqrt{x}=-21\)
\(\Leftrightarrow\sqrt{x}=\frac{7}{3}\)
\(\Leftrightarrow x=\frac{21}{9}\)
Vậy:Để P=\(\frac{5}{4}\)thì x=\(\frac{21}{9}\)
c)Còn phần c thì mik chịu
\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}+\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{2}\right)}{-\sqrt{x}}\)
a: Sửa đề: \(P=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\)
\(P=\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{x-1}{x-\sqrt{x}+\sqrt{x}-4}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b: Để P<0 thì căn x-1<0
=>0<=x<1
Lần sau ghi dấu ra xíu nhé :v
a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)
Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)
b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)
x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)
mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))
Bài 1:
Gọi biểu thức trên là $P$
\(P=\frac{\sqrt{x}(\sqrt{x}-3)+3(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-3)}.\frac{x-9}{\sqrt{x}-3}\)
\(=\frac{x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{\sqrt{x}-3}=\frac{x+9}{\sqrt{x}-3}\)
Bài 2:
Để $(d)$ và $(d')$ song song với nhau thì:
$m^2-3=2m$
$\Leftrightarrow m^2-2m-3=0$
$\Leftrightarrow (m+1)(m-3)=0$
$\Leftrightarrow m+1=0$ hoặc $m-3=0$
$\Leftrightarrow m=-1$ hoặc $m=3$
XEM CÓ SAI ĐỀ BÀI KHÔNG, MK RÚT GỌN RA TO LẮM
\(=\dfrac{x+5\sqrt{x}+6-x+5\sqrt{x}-6}{\left(\sqrt{x}+3\right)^2\cdot\left(\sqrt{x}-3\right)}\cdot\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{10\sqrt{x}}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}+3}=\dfrac{10}{\sqrt{x}+3}\)
a: \(M=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b: Để M=9/2 thì \(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}=\dfrac{9}{2}\)
=>\(2x+4\sqrt{x}+2-9\sqrt{x}=0\)
=>2x-5 căn x+2=0
=>(2 căn x-1)(căn x-2)=0
=>x=4 hoặc x=1/4
c: \(M-4=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)
=>M>4