Tìm X,biết :
2+4+6+8+...+2x=156
Nhanh nhé mình cần câu này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
x/6 + x/12 + x/7 + 5 + x/2 +4 = x
=> x/6 + x/12 + x/7 + x/2 - x = -5 - 4
=> x.(1/6 + 1/12 + 1/7 + 1/2 - 1) = -9
=> x. (-3/28) = -9
=> x = 84. Vậy x = 84
Đùa mik chắc thiếu đề rồi
sửa lại đi :
\(8\left(-2x^2-3x+4\right)+8\left(2x^2+2\right)=?\)
Hay troll thiệt
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
a) (x+10)(2y-5) = 143
=> (x+10);(2y-5) thuộc Ư(143)={-1,-143,1,143}
\(\orbr{\begin{cases}x+10=-143\\2y-5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-153\\y=2\end{cases}}\)
\(\orbr{\begin{cases}x+10=-1\\2y-5=-143\end{cases}}\Rightarrow\orbr{\begin{cases}x=-11\\y=-69\end{cases}}\)
\(\orbr{\begin{cases}x+10=1\\2y-5=143\end{cases}}\Rightarrow\orbr{\begin{cases}x=-9\\y=74\end{cases}}\)
\(\orbr{\begin{cases}x+10=143\\2y-5=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=133\\y=3\end{cases}}\)
Vậy ta có các cặp x,y thõa mãn : (-153,2);(-11,-69);(-9,74);(113,3)
b) x+(x+1)+(x+2)+..+(x+30)=1240
=> (x+x+x+...+x)+(1+2+3+...+30)=1240
=> 31x+465=1240
31x = 1240-465
31x = 775
x = 775 : 31
x= 25
c) 1+2+3+...+x=210
\(\frac{\left(x-1\right)}{1}+1=x\)
=> \(\frac{\left(x+1\right).x}{2}=210\)
(x+1)x = 210:2
(x+1)x = 105
chắc ko có x thõa mãn
d) 2+4+6+...+2x=210
=> 2(1+2+3+...+x)=210
1+2+3+..+x= 210:2 = 105
\(\frac{\left(x-1\right)}{1}+1\) = x
\(\frac{\left(x+1\right).x}{2}=105\)
(x+1)x = 105:2
(x+1)x = 52,5
ko có x thõa mãn đề bài
a, x + 10 và 2y - 5 thuộc Ư(143) = {1;-1;143;-143}
x + 10 | 1 | -1 | 143 | -143 |
2y - 5 | 143 | -143 | 1 | -1 |
x | -9 | -11 | 133 | -153 |
y | 74 | -69 | 3 | 2 |
b, x+(x+1)+(x+2)+........+(x+30) = 1240
=> x+x+1+x+2+...+x+30=1240
=> 31x+(1+2+...+30) = 1240
=> 31x + 465 = 1240
=> 31x = 775
=> x = 25
c, 1+2+...+x=210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x+1) = 420
Mà 420 = 20.21
=> x = 20
d, 2+4+...+2x = 210
=> 2(1+2+...+x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 210
Mà 210 = 14.15
=> x = 14
e, 1+3+5+...+(2x-1) = 225
=> \(\frac{\left[\left(2x-1\right)+1\right].x}{2}=225\)
=> \(\frac{2x^2}{2}=225\)
=> x2 = \(\left(\pm15\right)^2\)
=> x = 15 hoặc x = -15
1. a
\(\dfrac{8}{5}-\dfrac{5}{6}\cdot\dfrac{3}{4}\)
\(=\dfrac{8}{5}-\dfrac{5\cdot3}{3\cdot2\cdot4}\)
\(=\dfrac{8}{5}-\dfrac{5}{8}=\dfrac{39}{40}\)
1.b
\(=\dfrac{7}{8}+\dfrac{5}{6}\cdot\dfrac{3}{2}\)
\(=\dfrac{7}{8}+\dfrac{5\cdot3}{3\cdot2\cdot2}\)
\(=\dfrac{7}{8}+\dfrac{5}{4}=\dfrac{17}{8}\)
2.a
\(\dfrac{4}{5}+x=\dfrac{11}{10}\)
\(x=\dfrac{11}{10}-\dfrac{4}{5}=\dfrac{3}{10}\)
2.b
\(x-\dfrac{3}{4}=\dfrac{5}{7}\)
\(x=\dfrac{5}{7}+\dfrac{3}{4}=\dfrac{41}{28}\)
\(\frac{4^5\cdot9^42\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\frac{\left(2^2\right)^5\cdot\left(3^2\right)^4-2\cdot\left(2.3\right)^9}{2^{10}\cdot3^8+\left(2.3\right)^8\cdot2^2.5}\)
\(=\frac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\frac{2^{10}\left(3^8-3^9\right)}{2^{10}\cdot\left(3^8+3^8\cdot5\right)}=\frac{2^{10}\cdot\left(-13122\right)}{2^{10}\cdot39366}=\frac{-13122}{39366}=-\frac{1}{3}\)
Số số hạng của dãy là :
( 2x - 2 ) : 2 + 1 = x ( số hạng )
Giá trị của dãy trên là :
( 2x + 2 ). x : 2 = 156
=> ( x + 1 ) .x = 156
=> ( x + 1 ) . x = 13 . 12
=> ( x + 1 ). x = ( 12 + 1) . 12
=> x = 12
Vậy x = 12
Ta có \(2+4+6+8+...+2x=156\)
\(2.\left(1+2+3+4+...+x\right)=156\)
\(1+2+3+4+...+x=78\)
Xét 1+2+3+4+...+x
Số số hạng: (x-1):1+1=x
Tổng : \(\frac{\left(x+1\right).x}{2}\)
Do đó \(\frac{\left(x+1\right).x}{2}=78\)
\(x\left(x+1\right)=78.2=156\)
\(x.\left(x+1\right)=12.13=12.\left(12+1\right)\)
\(x=12\)