Tìm x thuộc N thỏa mãn :
1) X + 5 chia hết cho X + 2
2) 2X + 7 chia hết cho X + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x+7 chia hết cho x+1
=>2x+2+5 chia hết cho x+1
=>2.(x+1)+5 chia hết cho x+1
=>5 chia hết cho x+1
=>x+1=Ư(5)=(1,5)
=>x=(0,4)
a ) 2x + 5 chia hết cho x + 1
2x + 2 + 3 chia hết cho x + 1
( 2x + 2 ) + 3 chia hết cho x + 1
2x + 2 chia hết cho x + 1 với mọi x . Vậy 3 chia hết cho x + 1
=> x + 1 thuộc Ư( 3)
=> x + 1 thuộc { 1 ; 3 }
Với x + 1 = 1
x = 1 - 1
x = 0
Với x + 1 = 3
x = 3 - 1
x = 2
Vậy x thuộc { 0 ; 2 }
b ) 3x + 15 chia hết cho x + 2
3x + 6 + 9 chia hết cho x + 2
( 3x + 6 ) + 9 chia hết cho x + 2
3x + 6 chia hết cho x + 2 với mọi x . Vậy 9 chia hết cho x + 2
=> x + 2 thuộc Ư( 9 )
=> x + 2 thuộc { 1 ; 3 ; 9 }
Với x + 2 = 1
x = 1 - 2 ( loại )
Với x + 2 = 3
x = 3 - 2
x = 1
Với x + 2 = 9
x = 9 - 2
x = 7
Vậy x thuộc { 1 ; 7 }
c ) 4x + 22 chia hết cho 2x - 1
4x - 2 + 24 chia hết cho 2x - 1
4x - 2 chia hết cho 2x - 1 với mọi x . Vậy 24 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(24)
=> 2x - 1 thuộc { 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 )
Với 2x - 1 = 1
2x = 1 + 1
2x = 2
x = 2 : 2
x = 1
....
Với 2x - 1 = 24
2x = 24 + 1
2x = 25
x = 25 : 2 ( loại )
Vậy x thuộc { 1 ; 2 }
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
a) đề???
b) x + 5 = x + 2 + 3
Mà x + 2 chia hết x + 2
=> 3 chia hết x + 2
=> x + 2 thuộc Ư(3) = {-1;-3;1;3}
=> x thuộc {-5;-3;-1;1}
c) 2x + 7 = 2(x + 1) + 3
Mà 2(x + 1) chia hết x + 1
=> 3 chia hết x + 1
tương tự như câu b)
=> x thuộc { -4;-2;0;2}
1) X + 5 = x+2+3
x+2 chia hết cho X + 2 để x+5 chia hết cho x+2 thì 3 cũng phải chia hết cho x+2
Ư(3) = {-3; -1; 1; 3}
+) x +2 = -3 => x = -5 (loại)
+) x +2 = -1 => x = -3 (loại)
+) x +2 = 1 => x = -1 (loại)
+) x +2 = 3 => x = 1
Vậy x = 1 thì x +5 chia hết cho x +2
2) 2X + 7 = 2x +2 + 5 = 2(x+1) +5
2x+2 = 2(x+1) chia hết cho X + 1 để 2x+7 chia hết cho x+1 thì 5 cũng phải chia hết cho x+1
Ư(5) = {-5; -1; 1; 5}
+) x +1 = -5 => x = -6 (loại)
+) x +1 = -1 => x = -2 (loại)
+) x +1 = 1 => x = 0
+) x +1 = 5 => x = 4
Vậy x = 0; 4 thì 2x +7 chia hết cho x +1