K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

Em tìm điều kiện xác định của bài toán.

Sau đó bình phương hai vế lên (cả hai vế đều >0) xem ra kết quả gì?

14 tháng 9 2018

Em liên hợp đi

(Nghiệm x=2)

14 tháng 9 2018

ĐKXĐ: \(x\ge\frac{3}{2}\)

PT (=) \(\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=7\)

     (=) \(\sqrt{2x-3}+1+\sqrt{2x-3}+4=7\)

     (=)  \(2\sqrt{2x-3}=2\) (=) \(\sqrt{2x-3}=1\)(=)  2x = 4  (=)  x = 2 ( Thỏa mãn điều kiện )

Vậy x=2

2 tháng 10 2021

a) ĐKXĐ: \(\dfrac{2x+1}{x^2+1}\ge0\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)

b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}=-3+4-\sqrt[3]{-64}=1+4=5\)

a: ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

b: Ta có: \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)

\(=-3+4-\left(-4\right)\)

=-3+4+4

=5

16 tháng 2 2022

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)

28 tháng 2 2022

Bo thi:>

undefined

28 tháng 2 2022

+ đk x > 0 , x khác 1

9 tháng 3 2022

Mọi người ơi, giúp em với ạ!

 

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

31 tháng 5 2021

\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)

\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)

\(x^3=\)

\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)

\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)

\(x^3=4-3.2x\)

\(x^3=4-6x\)

thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)

31 tháng 5 2021

Đk: \(x\ge4\)

\(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

TH1:\(\sqrt{x-4}>2\Leftrightarrow x>8\)

\(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

TH2:\(\sqrt{x-4}\le2\Leftrightarrow4\le x\le8\)

\(A=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)=4\)

Vậy...

3 tháng 12 2021

a, ĐKXĐ:\(x\ne-3\)

\(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+5}{x+3}-\dfrac{2}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+3}{x+3}\\ \Leftrightarrow x+1=1\\ \Leftrightarrow x=0\left(tm\right)\)

b, ĐKXĐ:\(x>2\)

\(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\\ \Leftrightarrow x^2-4x-2=x-2\\ \Leftrightarrow x^2-5x=0\\ \Leftrightarrow x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=5\left(tm\right)\end{matrix}\right.\)