Các bạn giúp mik bài này với:
Vẽ hình và ghi GT-KL và chứng minh định lý sau:
Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại
mik mới lập nick nên mn nhớ kb mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GT: a//b; c\(\perp\)a
KL: c\(\perp\)b
Theo đề, ta có: A là góc vuông (hay \(\widehat{A}\)= 900)
Ta có: \(\widehat{A}\)= \(\widehat{B}\)= 900 (a//b, đồng vị)
Hay B là góc vuông
=> c\(\perp\)b (định nghĩa 2 đường thẳng vuông góc)
Hỏi nhiều quá , mà thà bạn nói ko cần vẽ hình thì còn giải , đằng này đã vẽ hình còn phải ghi GT , KL . mệt !!!!!!!!!!! @_@
Chứng Minh Định lý hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
d:
Giả thiết: \(\widehat{xAy}\) và \(\widehat{x'Ay'}\) là hai góc đối đỉnh
Kết luận: \(\widehat{xAy}=\widehat{x'Ay'}\)
Từ t/c :
Nếu đường thẳng a và đường thẳng b cùng vuông góc với 1 đường thẳng thì hai đường thẳng a và đường thẳng b song song với nhau.
=> đpcm.
GT | a\(\perp\)b tại M a cắt c tại N b//c |
KL | a\(\perp\)c tại N |
Chứng minh định lí:
Ta có: b//c
=>\(\widehat{M_3}=\widehat{N_1}\)(hai góc so le trong)
mà \(\widehat{M_3}=90^0\)
nên \(\widehat{N_1}=90^0\)
=>a\(\perp\)c tại N
giả thiết: 1 đường thẳng vuông góc với một trong 2 đường thẳng
kết luận: nó vuông góc với đường thẳng còn lại.
BẬT MÍ CHO BẠN NÈ: GIẢ THIẾT LÀ NHỮNG CHỮ Ở SAU TỪ ''NẾU''
KẾT LUẬN LÀ NHỮNG CHỮ SAU TỪ THÌ
k mk đi
ai k mk
mk k lại
thanks