K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1-21+x=0\)

\(\Leftrightarrow x^2-3x-20=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)

30 tháng 7 2021

1)\(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow21-x=x^2-2x+1\)

\(\Leftrightarrow x^2-x-20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)

2)\(\sqrt{8-x}+2=x\)

\(\Leftrightarrow8-x=\left(x-2\right)^2\)

\(\Leftrightarrow8-x=x^2-4x+4\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

 

 

1 tháng 7 2021

\(pt\Rightarrow\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2-x\\ \Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=\left(2-x\right)^2\\ \Leftrightarrow x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}=\left(x-2\right)^2\\ \Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=\left(x-2\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=x-2\left(1\right)\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2-x\left(2\right)\end{matrix}\right.\)

Tới đây giải \(pt\left(1\right)\left(2\right)\), sau đó thế lại vào cái pt ban đầu, từ đó nhận hoặc loại nghiệm tìm được

( Không giải được 2 cái kia thì cmt nhắc nha )

 

ĐKXĐ: \(x\ge-\dfrac{1}{4}\)

Ta có: \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)

\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}}=2\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)

\(\Leftrightarrow x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}=2\)

\(\Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=-2\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}=-\dfrac{5}{2}\left(loại\right)\\\sqrt{x+\dfrac{1}{4}}=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{9}{4}\)

hay x=2(thỏa ĐK)

Vậy: x=2

26 tháng 7 2021

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

26 tháng 7 2021

mình nghĩ ĐKXĐ là như này : 

x+2≥0

➩ x≥-2

có phải k

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:
ĐKXĐ: $x\geq 5$

$2x^2-8x-6=2\sqrt{x-5}\leq (x-5)+1$ theo BĐT Cô-si

$\Leftrightarrow 2x^2-9x-2\leq 0$

$\Leftrightarrow 2x(x-5)+(x-2)\leq 0$

Điều này vô lý do $2x(x-5)\geq 0; x-2\geq 3>0$ với mọi $x\geq 5$

Vậy pt vô nghiệm nên không có đáp án nào đúng.

28 tháng 2 2022

Bo thi:>

undefined

28 tháng 2 2022

+ đk x > 0 , x khác 1

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

9 tháng 3 2022

Mọi người ơi, giúp em với ạ!

 

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)