Bài 2 : cho đường tròn tâm O , dây AB=12cm. kẻ đường kính MN vuông góc với AB tại H(MH>HN). Hạ OKvuông góc MB(K thuộc MB). biết MB=10cm, tính đường kính của đường tròn và tính khoảng cách OK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABM\) nội tiếp đường tròn (O) có bán kính AB
=> \(\Delta ABM\) vuông tại M
b) Xét \(\Delta ABM\) vuông tại M, đường cao MH
=> \(AB^2+BH^2=25\)
=> AB =5
Ta có: MH .BC = MA.MB
=> MH =2,4
c) \(\Delta AMC\) vuông tại M, MN là tiếp tuyến
=> MN = NA= NC =AC/2
Xét \(\Delta OAN\) và \(\Delta OMN\) có:
OA =OH =R
ON chung
NA = NM
=> \(\Delta OAN=\Delta OMN\)
=> \(\widehat{OAN}=\widehat{OMN}=90^o\)
=> MN \(\perp\) OM
mà M thuộc (O)
=> MN là tiếp tuyến của (O)
d) Ta có: ON là tia phân giác \(\widehat{AOM}\)
OD là phân giác góc BOM
\(\widehat{AOM}=\widehat{BOM}\) (kề bù)
=> ON\(\perp\)OD
Xét \(\Delta NOD\) vuông tại O, đường cao OM
\(OM^2=NA.DB=>R^2=NA.DB\) (đpcm)
a: góc AMB=góc ACB=1/2*sđ cung AB=90 độ
=>AM vuông góc MB và AC vuông góc CB
góc BHK+góc BCK=180 độ
=>BHKC nội tiếp
góc EIA+góc EMA=180 độ
=>EIAM nội tiếp
b: Xét ΔAMK và ΔACM có
góc AMK=góc ACM(=góc ABM)
góc MAK chung
=>ΔAMK đồng dạng với ΔACM
=>AM/AC=AK/AM
=>AM^2=AK*AC
c: Xét ΔAIE vuông tại I và ΔACB vuông tại C có
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AC*AE
Xét ΔBIE vuông tại I và ΔBMA vuông tại M có
góc IBE chung
=>ΔBIE đồng dạng với ΔBMA
=>BI/BM=BE/BA
=>BI*BA=BM*BE
=>AE*AC+BM*BE=AB^2
MC=4cm; MD=12 cm=> CD=16 cm
Kẻ OH vuông góc với CD thì CH=1/2CD =8cm
do đó: MH=CH-CM=8-4=4(cm)
Tam giác vuông MOH có góc OMH = 30o
nên OH=1/2 OM hay OM=2OH
Theo pytago ta có: MH2=OM2-OH2=4OH2-OH2=3OH2
Do đó 3OH2=16
\(\Rightarrow OH=\frac{4}{\sqrt{3}}=\frac{4\sqrt{3}}{3}\)(cm)
đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog
a) Xét (O) có
ΔCAB nội tiếp đường tròn(C,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔCAB vuông tại C(Định lí)
⇔\(\widehat{ACB}=90^0\)
hay \(\widehat{KCB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}\) và \(\widehat{KCB}\) là hai góc đối
\(\widehat{BHK}+\widehat{KCB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Vì \(AB\perp MN\) tại H nên H là trung điểm AB (dây vuông góc đường kính)
\(\Rightarrow AH=\dfrac{1}{2}AB=6\left(cm\right)\)
MH vừa là đường cao vừa là trung tuyến nên \(\Delta MAB\) cân tại M
Do đó \(MA=MB=10\left(cm\right)\)
Ta có \(\widehat{MAN}=90^0\)(góc nt chắn nửa đường tròn) nên tam giác MAN vuông tại A
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\\ \Rightarrow\dfrac{1}{36}=\dfrac{1}{AN^2}+\dfrac{1}{100}\\ \Rightarrow\dfrac{1}{AN^2}=\dfrac{1}{36}-\dfrac{1}{100}=\dfrac{4}{225}\\ \Rightarrow4AN^2=225\Rightarrow AN^2=\dfrac{225}{4}\Rightarrow AN=\dfrac{15}{2} =7,5\left(cm\right)\)
\(MN=\sqrt{AN^2+AM^2}=\sqrt{10^2+7,5^2}=12,5\left(cm\right)\)
Vậy đường kính đường tròn \(\left(O\right)\) dài 12,5 cm
NH vừa là đường cao vừa là trung tuyến nên \(\Delta NAB\) cân tại N
OK vuông góc với MB nên K cũng là trung điểm MB
\(\Rightarrow AN=NB=7,5\left(cm\right)\)
\(\left\{{}\begin{matrix}NO=OM\left(=R\right)\\MK=KB\left(cm.trên\right)\end{matrix}\right.\Rightarrow OK\) là đtb tam giác MBN
\(\Rightarrow OK=\dfrac{1}{2}NB=\dfrac{1}{2}\cdot7,5=3,75\left(cm\right)\)