1 Rút gọn biểu thức
(4x+1)^2+(4x-1)^2-2(4x+1)(4x-1)
2 Phân tích đa thức thành nhân tử
4x^2-9+(2x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )
= [ ( x + 2 ) - ( x - 2 ) ]2
= ( x + 2 - x + 2 )2
= 42 = 16
=> B không phụ thuộc vào x
Vậy với x = -4 thì B vẫn bằng 16
Bài 2.
4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2
Bài 3.
Ta có : \(A=\frac{3}{2}x^2+2x+3\)
\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)
\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)
Dấu "=" xảy ra khi x = -2/3
=> MinA = 7/3 <=> x = -2/3
1. y(y+1)-5y-5 2. 4x3=x
=y(y+1)-(5y+5) <=>4x3-x=0
=y(y+1)-5(y+1) <=>x(4x2-1)=0
=(y+1)(y-5) <=>x(4x2-1)=0
<=>\(\orbr{\begin{cases}x=0\\4x^2-1=0\end{cases}}\)=\(\orbr{\begin{cases}x=0\\4x^2=1\end{cases}}\)=\(\orbr{\begin{cases}x=0\\x^2=\frac{1}{4}\end{cases}}\)=\(\orbr{\begin{cases}x=0\\x=+_-\frac{1}{2}\end{cases}}\)
3. M= (x+3)2 -(4x+1)-x(2x+1)
M= (x2+6x+9)-4x-1-2x2-x
M=x2+6x+9-4x-1-2x2-x
M= -x2+x+8
\(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\\ ---\\ 4x^2-4x-3\\ =4x^2-4x+1-4\\ =\left(2x-1\right)^2-2^2=\left(2x-1-2\right)\left(2x-1+2\right)\\ =\left(2x-3\right)\left(2x+1\right)\)
1: =(2x)^2-2*2x*1+1^2
=(2x-1)^2
2: =4x^2-6x+2x-3
=2x(2x-3)+(2x-3)
=(2x-3)(2x+1)
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
1 )
\(\left(2x-1\right)^2+\left(3x+1\right)^2+2\left(2x-1\right)\left(3x+1\right)=\left[\left(2x-1\right)+\left(3x+1\right)\right]^2=\left(5x\right)^2=25x^2\)
2 )
\(4x^4+1=\left(2x^2\right)^2+2.2x^2.1+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
1) \(\left(2x-1\right)^2+\left(3x+1\right)^2+2\left(2x-1\right)\left(3x+1\right)\)
\(=\left(2x-1+3x+1\right)^2\)
\(=\left(5x\right)^2=25x^2\)
1) ( 4x + 1 )2 + ( 4x - 1 )2 - 2( 4x + 1 ).( 4x - 1 )
= ( 4x + 1 - 4x - 1 )2
= 22
= 4
2) 4x2 - 9 + ( 2x + 3 )
= ( 2x )2 - 32 + ( 2x + 3 )
= ( 2x + 3 ).( 2x - 3 ) + ( 2x + 3 )
= ( 2x + 3 ). ( 2x - 3 + 1 )
= ( 2x + 3 ) .( 2x - 2 )
= 2.( 2x + 3 ) .( x - 1 )
1, (4x+1)^2 + (4x-1)^2 - 2(4x+1)(4x-1)
=[(4x+1)-(4x-1)]^2
=(4x+1-4x+1)^2
=2^2
=4
2, 4x^2 - 9 +(2x+3)
=(4x^2 - 9)+(2x+3)
=(2x+3)(2x-3)+(2x+3)
=(2x+3)(2x-3+1)
=(2x+3)(2x-2)
=2(x-1)(2x+3)
=.= hok tốt!!