Cho h/thang cân ABCD ( AB // CD, AB < CD ) . Kẻ các đường cao AH & BK. Gọi O là giao đ' của 2 đường chéo
a, CMR : DH = CK, OC = Od
b, cho \(\widehat{ADC}\) = 60o , AB = AD = a
Tính chu vi của h/thang cân ( theo a )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K
Ta có: AD= BC (gt)
Góc D = góc C
=> tam giác AHD= tam giác BKC (cạnh huyền- góc nhọn)
=> DH= CK ( 2 cạnh tương ứng)
xét tam giác AHD và tam giác BKC có:
AD = BC (gt)
góc ADH = góc BCK (gt)
góc AHD = góc AKC = 900
=> tam giác ... = tam giác .... (ch-gn)
=> DH = CK (cạnh tương ứng)
t i c k nha!! 463745768658897697696789768568654
xét tam giác ADH và BCK
góc H= góc K =90 độ
AD=BC(tính chất hình thang cân)
góc D =góc C(tính chất hình thang cân)
=>tam giác ADH=tam giác BCK(cạnh huyền - góc nhọn)
=>DH=CK
A B C D H K
Xét \(\Delta\)ADH và \(\Delta\)BCK
có AD=BC vì (ABCD là hình thang cân nên có 2 cạnh bên = nhau)
\(\widehat{D}=\widehat{C}\) (ABCD là hình thang cân nên có 2 cạnh bên = nhau)
\(\widehat{AHD}=\widehat{DKC}=90^o\)
Nên \(\Delta\)ADH và \(\Delta\)BCK(Cạnh huyền góc nhọn)
suy ra DH=CK(2 cạnh tương ứng)
A B D C H K
Có hình thang ABCD cân
⇒AD=BC ; ∠ADC=∠BCD
Có AH⊥DC
⇒∠AHD=∠AHC
Có BK⊥DC
⇒∠BKC=∠BKD
* Xét △AHD(∠AHD=90) và ΔBKC(∠BKC=90) có
AD=BC(c/m trên)
∠ADH=∠BCK
⇒△AHD=ΔBKC( cạnh huyền-góc nhọn)
⇒DH=KC(2 cạnh tương ứng)(đpcm)
A B D H K C
Xét hình thang cân ABCD ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)
Xét \(\Delta ADH=\Delta BCK\)
\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADH=\Delta BCK\) ( ch - gn )
\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)
\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
Xét ΔAHD và ΔBKC có:
\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)
AD=BC(gt)
\(\widehat{D}=\widehat{C}\left(gt\right)\)
=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)
=>DH=CK
a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc D
Do đó; ΔAHD=ΔBKC
SUy ra: DH=CK
Xét ΔBDC và ΔACD có
BD=AC
DC chung
BC=AD
Do đó: ΔBDC=ΔACD
Suy rA: góc OCD=góc ODC
=>ΔOCD cân tại O
=>OC=OD
b: Xét tứ giác ABKH có AB//KH và AB=KH
nên ABKH là hình bình hành
Suy ra: AB=HK=a
Xét ΔAHD vuông tại H có cos ADH=DH/AD
=>DH/a=1/2
=>DH=1/2a
=>CK=DH=1/2a
=>CK+DH=a
=>DC=2a
C=a+a+a+2a=5a