Cho (x – 4).f(x) = (x – 5).f(x + 2). Chứng tỏ rằng f(x) có ít nhất hai nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
( x - 4 ) . f(x) = ( x - 5 ) . f(x + 2)
Xét x = 4
<=> ( 4 - 4 ) . f(x) = ( 4 - 5 ) . f(4 + 2)
<=> f(6) . f( -1 ) = 0
<=> f(6) = 0 ( 1 )
Xét x = 5
<=> ( 5 - 4 ) . f(5) = ( 5 - 5 ) . f( 5 + 2 )
<=> f(5) = f(7) . 0
<=> f(5) = 0 (2)
Từ (1) và (2) => đpcm.
f(4)*(4-4)=9*f(2)
=>f(4)*0=9*f(2)
=>f(2)=0
=>x=2 là nghiệm
f(-7)*0=(-9)*f(-9)
=>f(-9)=0
=>x=-9 là nghiệm
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
thay x=0 ta có 0.f(-3)=2f(0)
->2f(0)=0
->f(0)=0
nên 0 là 1 nghiệm của f(x)
thay x=-2 ta có-2f(-5)=0.f(x)
-> -2f(-5)=0
->f(-5)=0
nên -5 là 1 nghiệm của f(x)
vậy f(x) có it nhất 2 nghiệm
Thay x = 1
(1 - 1) * f(x) = (1+2) * f(1-5)
0 = 3 * f(-4)
Vì 3 khác 0 nên f(-4) = 0 => x=-4 là nghiệm của f(x)
Thay x = -2
(-2-1) * f(-2) = (-2+2) * f(-2-5)
(-3) * f(-2) = 0 * f(-7)
(-3) * f(-2) = 0
mà -3 khác 0
nên f(-2) = 0
vậy x = -2 là nghiệm của f(x)
Nên f(x) có ít nhất 2 nghiệm.
Khi x=4 thì 0*f(5)=9*f(4)
=>f(4)=0
=>x=4 là nghiệm
Khi x=-5 thì f(-5)*0=(-9)*f(-4)
=>f(-4)=0
=>x=-4 là nghiệm
Ta có: (x-4).f(x)=(x-5).f(x+2)
Với x = 4
thì ( 4-4).f(4) = (4-5).f(4+2)
0 = -1 . f(6)
=> f(6) = 0 : ( -1 ) = 0
=> x = 6 là 1 nghiệm của đa thức f(x)
Với x = 5
thì ( 5 - 4 ) . f(5) = ( 5-5 ) . f(5+2)
1 . f(5) = 0
=> f(5) = 0 : 1 = 0
=> x = 5 là 1 nghiệm của đa thức f(x)
Vậy đa thức f(x) có ít nhất 2 nghiệm
Thay x = 4 ta được \(\left(4-4\right)f\left(4\right)=\left(4-5\right)f\left(4+2\right)\)
\(\Leftrightarrow-1f\left(6\right)=0\Leftrightarrow f\left(6\right)=0\)
Vậy, 6 là nghiệm của f(x)
Thay x = 5 ta được \(\left(5-4\right)f\left(5\right)=\left(5-5\right)f\left(5+2\right)\)
\(\Leftrightarrow1f\left(5\right)=0\Leftrightarrow f\left(5\right)=0\)
Vậy, 5 là nghiệm của f(x)
P/s: Không biết đúng k nữa, kiến thức lâu ko học