Câu 6: Cho tam giác ABC cân tại A và D là một điểm bất kì trê đáy BC. Chứng minh rằng tổng khoảng cách từ D đến hai cạnh bên không thay đổi khi D di động trên đáy BC.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AP
22 tháng 1 2017
ủa , sao câu hỏi của bn giống mk vậy !
m.n ơi trả lời đi giúp chúng tớ với !
5 tháng 2 2017
Hạ DH vuông góc AB => DH là khoảng cách từ D đến AB
Hạ DK vuông góc AC => DK là khoảng cách từ D đến AC
Diện tích tam giác ABC = Diện tích tam giác ABD + Diện tích tam giác ACD
SABC = \(\frac{AB\times HD}{2}\)+ \(\frac{AC\times KD}{2}\)
Vì tam giác ABC cân tại A => AB = AC
Ta có:
SABC = \(\frac{AB}{2}\)x (HD + KD)
Vì SABC không đổi, AB không đổi => HD + KD không đổi => tổng khoảng cách từ D đến các cạnh AB, AC không đổi
6 tháng 2 2017
Các bạn hãy nêu cách trồng 12 cây thành 6 hàng , mỗi hàng có 4 cây , vẽ hình minh họa ( dùng các dấu chấm để tượng trưng cho cây )
giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!!!!!!
bc=db+dc
cho dù tổng khoảng cách từ d đến hai cạnh bên trên đáy bc cũng ko hay đổi vì tổng của db và dc luôn bằng bc, nó nằm trên bc