cho tam giác ABC đều; E thuộc AB, D thuộc AC sao cho BD cắt CE tại P và diện tích tứ giác ADBE bằng diện tích tam giác BPC. tính góc BPE?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha.
Vì ADKE là hình bình hành.
=> ^ADK = ^ AEK
=> ^ ADK + 60o = ^ AEK + 60o
=> ^BDK = ^KCE
Xét tam giác BDK = tam giác KEC ( c.g.c )
=> BK = KC ( 1 )
Có ^DAE + ^ BAC + ^ DAB + ^ EAC = 360o
=> ^ DAE + ^BAC + 120o = 360o
=> ^BAC = 240o - ^DAE
mà ^DAE = 180o - ^ADK
=> ^BAC = 60o + ^ADK = ^BDA
=> tam giác BAC = tam giác BDK ( c g.c )
=> BC = BK ( 2 )
Từ ( 1 ), ( 2 )
=> BC = BK = CK
=> tam giác KBC đều
a) Xét ΔABD vuông tại A và ΔABH vuông tại A có
DA=AH(gt)
AB là cạnh chung
Do đó: ΔABD=ΔABH(hai cạnh góc vuông)
⇒BD=BH(hai cạnh tương ứng)
Xét ΔDBH có BD=BH(cmt)
nên ΔDBH cân tại B(định nghĩa tam giác cân)
b) Ta có: AC=2AD(D là trung điểm của AC)
hay AC=2*5=10cm
Ta có: AC=2AB(gt)
hay AB=102=5cmAB=102=5cm
Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
BC2=AB2+AC2BC2=AB2+AC2
hay BC2=52+102=125BC2=52+102=125
⇒BC=√125=5√5cmBC=125=55cm
Vậy: BC=5√5cm
Xét ΔDAF và ΔEBD có
DA=EB
góc DAF=góc EBD(=120 độ)
AF=BD
=>ΔDAF=ΔEBD
=>DF=ED
Xét ΔFCE và ΔEBD có
FC=EB
góc FCE=góc EBD
CE=BD
=>ΔFCE=ΔEBD
=>FE=ED
=>FE=ED=DF
=>ΔDEF đều