Cho a + b + c = 6 . Tính giá trị biểu thức :
\(\frac{a^3+b^3+c^3-3ab}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
\(A=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}+\frac{x^2y^2z^2}{xyz}\)
\(A=\frac{\left(2y+2x\right).z+2xy}{xyz}+\frac{x^2+y^2+x^2}{xyz}\)
\(A=\frac{2yz+2xz+2xy}{xyz}+\frac{x^2+y^2+z^2}{xyz}\)
\(A=\frac{2yz+2xz+2xy+x^2+y^2+z^2}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}\)
Có đúng k nhỉ k chắc