K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

đề trên có chút sai nhé các bạn    P =\(\frac{x^2}{1+2y^3}+\frac{y^2}{1+2z^3}+\frac{z^2}{1+2x^3}\)

23 tháng 8 2018

GTNN của P là 1 và cũng là duy nhất

15 tháng 8 2020

:))

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\Leftrightarrow xy+yz+xz=3xyz\)

\(\Rightarrow3xyz=xy+yz+xy\ge3\sqrt[3]{x^2y^2z^2}\)

\(\Rightarrow x^3y^3z^3\ge x^2y^2z^2\Leftrightarrow\left(x^2y^2z^2\right)\left(xyz-1\right)\ge0\)

\(\Leftrightarrow xyz\ge1\left(x^2y^2z^2>0\right)\)

\(\Rightarrow P=x+\frac{y^2}{2}+\frac{z^3}{3}\)

\(=\frac{x}{6}+\frac{x}{6}+\frac{x}{6}+\frac{x}{6}+\frac{x}{6}+\frac{x}{6}+\frac{y^2}{6}+\frac{y^2}{6}+\frac{y^2}{6}+\frac{z^3}{6}+\frac{z^3}{6}\)

\(\ge11\sqrt[11]{\frac{x^6y^6z^6}{6^{11}}}\ge\frac{11}{6}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

13 tháng 6 2017

Câu hỏi của s2 Lắc Lư s2 - Toán lớp 9 - Học toán với OnlineMath

26 tháng 5 2019

Áp dụng bđt cosi ta có

\(\frac{x^3}{y^2+z}+\frac{9}{25}x\left(y^2+z\right)\ge\frac{6}{5}x^2\)

................................................................,,,,

=>\(VT\ge\frac{6}{5}\left(x^2+y^2+z^2\right)-\frac{9}{25}\left(xy^2+yz^2+zx^2+xy+yz+xz\right)\)

Ta có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=\left(x^3+xz^2\right)+\left(y^3+yx^2\right)+\left(z^3+zy^2\right)+x^2z+y^2x+z^2y\)

                                                                  \(\ge3\left(xy^2+yz^2+zx^2\right)\)

=> \(xy^2+yz^2+zx^2\le\frac{2}{3}\left(x^2+y^2+z^2\right)\)

Lại có \(xy+yz+xz\le x^2+y^2+z^2\)

Khi đó

\(VT\ge\frac{6}{5}\left(x^2+...\right)-\frac{9}{25}\left(\frac{5}{3}\left(x^2+y^2+z^2\right)\right)=\frac{3}{5}\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{5}=\frac{4}{5}\)

Vậy MinA=4/5 khi x=y=z=2/3

26 tháng 5 2019

áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)

26 tháng 5 2019

1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1

Tìm GTNN của P= x-1/y+y-1/x+ x-1/x2

               Giải

Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1

Theo AM-GM ta có:

P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1

Dấu = xảy ra⇔x=y=z=1√3

P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!