K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2015

Vì 14n+3 và 21n+4 là hai sô nguyên tố cùng nhau

=>ƯCLN(14n+3,21n+4)=1

Ta có:

Gọi UCLN của hai số đó là d

=>14n+3 chia hết cho d

    21n+4 chia hết cho d

=>3.(14n+3)=42n+9 chia hết cho d

    2.(21n+4)=42n+8 chia hết cho d

=>42n+9-42n+8 chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau(ĐPCM)

28 tháng 10 2015

câu hỏi tương tự

21 tháng 12 2017

Gọi  14n+3 và 21n+4 =d (d thuộc N)

=>14n+3 và 21n+4 chia hết cho d

=>3(14n+3) - 2(21n+4) =1 chia hết cho d

=> d=1

Vậy 14n+3 va 21n+4 la so nguyen to cung nhau 

21 tháng 12 2017

Gọi UCLN(14n+3,21n+4)=d

Ta có:14n+3 chia hết cho d\(\Rightarrow3\left(14n+3\right)\) chia hết cho d\(\Rightarrow42n+9\) chia hết cho d

          21n+4 chia hết cho d\(\Rightarrow2\left(21n+4\right)\) chia hết cho d\(\Rightarrow42n+8\) chia hết cho d

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)\)chia hết cho d

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow d=1\) nên suy ra ĐPCM

Vậy ........................

18 tháng 11 2015

Đặt UCLN(n + 1 , 2n + 3) = d

n + 1 chia hết cho d => 2n + 2 chia hết  cho d

=> [(2n + 3) - (2n + 2) ] chia hết cho d 

1 chia hết cho d hay d = 1

Vậy (n + 1 , 2n + 3) = 1       (2 số nguyên tố cùng nhau)      

30 tháng 11 2017

Muon chung minh n+3 va 2n+5 la so nguyen to thi ta phai chung minh n+3 va 2n+5 co UC la 1

(2n+5;n+3)=(n+2;n+3)=1 (UC)

Vay 2n+5 va n+3 la hai so nguyen to cung nhau

Cac ban lam dang nay cu lay so lon tru so be nhe!

18 tháng 1 2018

Đề bài sai roi con ơi!

Xem lại đi

28 tháng 12 2016

Gọi d là ƯC (n + 1; 3n + 4) Nên ta có :

n + 1 ⋮ d và 3n + 4 ⋮ d

<=> 3 (n + 1) ⋮ d và 3n + 4 ⋮ d

<=> 3n + 3 ⋮ d và 3n + 4 ⋮ d

=> (3n + 4) - (3n + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC (n + 1; 3n + 4) = 1 nên n + 1 và 3n + 4 là NT cùng nhau ( dpcm )

Ý 2 tương tự

28 tháng 12 2016

gọi ước chung lớn nhất của n+1 và 3n+4 là d 

ta có n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+ 3 chia  hết cho d

3n+4 chia hết cho d

=> 3n+4 - ( 3n + 3) chia hết cho d

=> 3n +4 - 3n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

vậy..............

24 tháng 11 2014

Gọi ƯCLN(3n+4;n+1) là d.

=>3n+4 chia hết cho d và n+1 chia hết cho d.

=>3.(n+1) chia hết cho d

=>3n+4    ___________d và 3n+3 chia hết cho d

=>(3n+4)-(3n+3) chia hết cho d

=>1 chia hết cho d

=>ƯCLN(3n+4;n+1)=1 nên 2 số 3n+4 và n+1 là 2 số nguyên tố cùng nhau.

 

4 tháng 1 2017

Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.

Ta có : 2n + 3 chia hết cho d.

           3n + 5 chia hết cho d.

=> 3( 2n + 3 ) chia hết cho d.

=> 2(3n + 5 ) chia hết cho d.

=> 6n + 9 chia hết cho d.

=> 6n +10 chia hết cho d.

Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.

      = 1 chia hết cho d

=> d thuộc Ư ( 1 )

=> d = 1

Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1

Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.

2 tháng 12 2017

gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)

suy ra  2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d

           3n+5 chia hết cho d }  2(3n+5) chia hế cho d } 6n+10 chia hết cho d

suy ra [(6n+10) -(6n+9) chia hết  cho d

        =[(6n-6n)+(10-9)] chia hết cho d

        =[0+1] chia hết cho d

        =1 chia hết cho d

vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1

18 tháng 2 2016

bài toán này quá khó luôn

23 tháng 2 2016

kho quá đi chứ cậu nhỉ!!!!!!!!

1 tháng 12 2016

Giải:

Gọi \(d=UCLN\left(3n+2;5n+3\right)\)

Ta có:

\(3n+2⋮d\)

\(5n+3⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+10⋮d\)

\(15n+9⋮d\)

\(\Rightarrow15n+10-15n+9⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(3n+2;5n+3\right)=1\)

\(\Rightarrow\)3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

Vậy 3n + 2 và 5n + 3 là 2 số nguyên tố cùng nhau

1 tháng 12 2016

Gọi d là ƯCLN(3n+2,5n+3)

Ta có : \(\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)

\(\Rightarrow15n+10-15n-9⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)

Vậy : 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau .