tam giác ABC vuông tại A có AB bằng 6cm, AC=8cm, AM là đường trung tuyến ứng với cạnh huyền. Tính độ dài AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) theo định lý py ta go ta có
AB^2 + AC^2 =BC^2
=>BC^2 = 6^2+ 8^2 = 100 => BC = 10 (cm)
ta lại có đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền
=> AM = 10 : 2= 5 (cm)
B) ta có
AB // ME
AB vuông góc với AC
=> me vuông góc với ac (1)
AC// ME và ac vuông góc với ab => me vuông góc với ab (2)
AB vuông góc vs AC => AF vuông góc với ae(3)
từ (1), (2) và (3) suy ra aemf có 3 góc vuông =>aemf là hình chứ nhật
c) điều kiện
- có AF = FM
hoặc AM =EF
hay AM , EF là phân giác của góc vuông
Cô gọi ý nhé. Vì bài này cơ bản.
a) Xét tứ giác ADME và thấy nó có 3 góc vuông. Vậy ADME là hình chữ nhật.
b) Do ADME là hình chữ nhật nên DE = AM.
Do tam giác ABC vuông tại A nên \(AM=MB=MC=\frac{BC}{2}\)
Áp dụng Pitago ta tìm được BC = 10 cm nên AM = 5 cm.
Vậy DE = 5cm.
Áp dụng định lý Py-ta-go, ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2=100=10\left(cm\right)\)
Ta lại có, đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền
\(\Rightarrow AM=10:2=5\left(cm\right)\)