K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

y-3/4= 5/12:10/3                                                                                                                                                                           y-3/4 =5/12*3/10                                                                                                                                                                           y -3/4=1/8                                                                                                                                                                                       y=1/8+3/4                                                                                                                                                                                       y=7/8                                                                          

28 tháng 11 2018

a) Theo đề bài, ta có:

\(\frac{x}{11}=\frac{y}{12};\frac{y}{3}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{11}=\frac{y}{12};\frac{y}{3.4}=\frac{z}{7.4}\)

\(\Rightarrow\frac{x}{11}=\frac{y}{12};\frac{y}{12}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{2.11-12+28}=\frac{152}{38}=4\)

Tự làm tiêp snha bạn

Câu b tương tự

28 tháng 11 2018

a)

    Ta có:

           \(\frac{y}{3}=\frac{z}{7}\Leftrightarrow\frac{y}{12}=\frac{z}{28}\Rightarrow\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

         \(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\Leftrightarrow\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)

Suy ra \(x=11\cdot4=44;y=12\cdot4=48;z=28\cdot4=112\)

b)

       \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

         \(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

Suy ra  \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

          \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Do đó: \(x=8\cdot2=16;y=12\cdot2=24;z=15\cdot2=30\)

chúc bạn học tốt!

5 tháng 2 2019

\(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)

\(=\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6+3^5\right)}\)

\(=\frac{3^5-3^4}{3^6+3^5}=\frac{3^4.\left(3-1\right)}{3^5\left(3+1\right)}\)

\(=\frac{3^4.2}{3^5.4}=\frac{3^4.2}{3^4.3.4}=\frac{2}{12}=\frac{1}{6}\)

P/s: Hoq chắc ạ (: Ms lp 6 lm đại

5 tháng 2 2019

\(\frac{x}{2}=\frac{y}{3}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)(1)

\(\frac{y}{4}=\frac{z}{5}\)

\(\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) (2)

 \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8\\y=2.12\\z=2.15\end{cases}\Rightarrow}\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

NV
18 tháng 4 2021

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)

15 tháng 7 2018

a) \(2^{x+1}\cdot3^y=12^x\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=2x\\y=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b) \(10^x:5^y=20^y\Leftrightarrow20^y\cdot5^y=10^x\Leftrightarrow\left(20\cdot5\right)^y=10^x\Leftrightarrow100^y=10^x\Leftrightarrow10^{2y}=10^x\Leftrightarrow2y=x\)

c) \(\left\{{}\begin{matrix}2^x=4^{y-1}\\27^y=3^{x+8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2^x=2^{2y-2}\\3^{3y}=3^{x+8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\3y=x+8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-2\\3y=2y-2+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=6\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:

$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm) 

TH2: 

$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm) 

TH3: 

$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm) 

TH4: 

$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm) 

 

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

b.

Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$  và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm) 

TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm) 

TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)

TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)