K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

x đâu bn?

14 tháng 8 2018

a) \(\sqrt{\left(2,5+0,7\right)^2}=\left(2,5+0,7\right)=3,2\)

b) \(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\frac{3+39}{7+91}=\frac{42}{98}=\frac{3}{7}\)

Ko có x nha bạn

19 tháng 6 2018

Giải:

a) \(\sqrt{\left(2,5-0,7\right)^2}\)

\(=\left|2,5-0,7\right|\)

\(=\left|1,8\right|=1,8\)

Vậy ...

b) \(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}\)

\(=\dfrac{3+39}{7+91}\)

\(=\dfrac{42}{98}=\dfrac{3}{7}\)

Vậy ...

19 tháng 6 2018

a)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}.1\)

=\(\frac{3+39}{7+91}\)

=\(\frac{42}{98}\)

=\(\frac{3}{7}\)

19 tháng 6 2018

b)\(\sqrt{\left(2,5-0,7\right)^2}\)

=\(|2,5-0,7|\)

=2,5-0,7

=1,8

a: \(=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2}\cdot\dfrac{1}{4}=\dfrac{1}{100}\)

b: \(=\dfrac{\left[5^3\left(5-1\right)\right]^3}{5^{12}}=\dfrac{5^9}{5^{12}}\cdot\dfrac{4^3}{1}=\dfrac{4^3}{5^3}\)

c: \(=\sqrt{1.8^2}=1.8\)

Bài 1:

\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)

2 tháng 7 2020

Cảm ơn bạn nhé !

4 tháng 10 2019

a/ ĐKXĐ : \(x\ge0;x\ne9;x\ne4\)

Ta có :

\(P=\left(\frac{2\sqrt{x}}{9-x}+\frac{1}{3+\sqrt{x}}\right).\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)

\(=\left(\frac{2\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{3-\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right).\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x-2}}\)

\(=\frac{\sqrt{x}+3}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)

\(=\frac{1}{\sqrt{x}-2}\)

Vậy \(P=\frac{1}{\sqrt{x}-2}\) với ĐKXĐ \(x\ge0;x\ne9;x\ne4\)

b/ Với ĐKXĐ \(x\ne0;x\ne9;x\ne4\) ta có :

\(P=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{\sqrt{x}-2}=-\frac{1}{3}\)

\(\Leftrightarrow2-\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=-1\) (vô lí)

Vậy không tìm đc x thỏa mãn

4 tháng 10 2019

27 tháng 8 2019

Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)

Bien doi PT thanh \(a^2+4b^2=5ab\)

\(\Leftrightarrow a^2-5ab+4b^2=0\)

\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)

\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=65-x\)

\(\Leftrightarrow x=0\left(n\right)\)

\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=64.65-64x\)

\(\Leftrightarrow65x=64.65-65\)

\(\Leftrightarrow x=63\left(n\right)\)

Vay nghiem cua PT la \(x=0,x=63\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

Câu 1:

ĐKXĐ: $3\geq x\geq -2$

PT \(\sqrt{x+2}-2-(\sqrt{3-x}-1)=x^2-6x+8\)

\(\Leftrightarrow \frac{x-2}{\sqrt{x+2}+2}-\frac{2-x}{\sqrt{3-x}+1}=(x-2)(x-4)\) (liên hợp)

\(\Leftrightarrow (x-2)\left[\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\right]=0\)

Ta thấy với mọi $3\geq x\geq -2$ thì:

\(\frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}>0\)

\(-x+4>0\)

\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4>0\)

\(\Rightarrow \frac{1}{\sqrt{x+2}+2}+\frac{1}{\sqrt{3-x}+1}-x+4\neq 0\)

Do đó $x-2=0$ hay PT có nghiệm duy nhất $x=2$ (t/m)

15 tháng 7 2019

Em thử thôi nha! Ko chắc...

2)Nhận xét x = 1 là một nghiệm. Xét x khác 1, khi đó

ĐK: \(x>1\)

PT \(\Leftrightarrow\left(\sqrt{x}-1\right)-\sqrt{x-1}=\left(\sqrt{x+8}-3\right)-\left(\sqrt{x+3}-2\right)\) (bớt 1 ở mỗi vế)

\(\Leftrightarrow\frac{x-1}{\sqrt{x}+1}-\frac{x-1}{\sqrt{x-1}}=\frac{x-1}{\sqrt{x+8}+3}-\frac{x-1}{\sqrt{x+3}+2}\)

\(\Leftrightarrow\left(x-1\right)\left[\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)\right]=0\)

Vì x > 1 nên x - 1 khác 0 suy ra \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)-\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+8}+3}\right)=0\) (1)

Dễ thấy vế trái của pt (1) < 0 với mọi x > 1 (em ko biết lí luận thế nào nữa...)

Do đó với x > 1 thì pt vô nghiệm.

Vậy pt có nghiệm duy nhất x = 1